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Abstract 

  

This paper mainly focuses on the theoretical development of the equations of motion of a robotic manipulator, involving 

both joint flexibility and structural flexibility. The objective of this work is to extract the dynamic equations and write a 

’C’ program to check the effect of joint flexibility on the system frequencies. The obtained outcomes of this paper 

showthat the fundamental frequency is not sensitive to hub inertia or payload inertia but are mainly affected by payload 

mass, while the second frequency is affected by payload inertia. 
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1. Introduction 

 
1
 Robots are widely used in automobile and aerospace 

industries where high precision along with good amount of 

production is involved. As rigid robots are very heavy and 

cannot be operated at high speeds, intensive research in 

Dynamic modeling and control of robots with flexible 

links are carried out on both the rigid body and elastic 

deformations. The Flexible robot system is governed by 

partial differential equation, which means that the System 

is of infinite dimensionality. 

 The robot arm is made up of series of links equipped 

with actuators. The last link is connected to an end effector 

(i.e. gripper). The system of links without the end effectors 

is referred to as manipulator. The flexibility of robotic 

manipulator is to be analyzed for better design. The 

flexibility of robotic beam has received wide spread 

attention in connection With practical interest in 

applications such as flexible arm, helicopter rotor blades, 

air Craft propellers turbine rotor blades and space crafts. 

 

2. Definition of Robot 
 

“A reprogrammable multifunctional manipulator designed 

to move material, parts, tools or other specialized devices 

through variable programmed motions for performing 

variety of tasks.” 
 

3. Laws of robotics 

 

1. A robot may not injure a human being or, through 

inaction, allow a human being to come to harm. 

2. A robot must obey the orders given to it by human 

beings, except where such orders would conflict with 

the First Law. 

                                                           
*Corresponding author Srinivas Reddy P and Chandra Sekhar K are 

faculty members; T.A. Janardhan Reddy is working as HOD 

3. A robot must protect its own existence as long as 

such protection does not conflict with the First or 

Second Law. 

 

4. Configurations of robotic manipulators 

 

a) Cartesian co-ordinate robot: The Cartesian co-

ordinate robot is one that consists of a Column and an 

arm. It is sometimes called an x-y-z robot, indicating 

the axes of motion. The x-axis is lateral motion, the y-

axis is longitudinal motion, and the z-axis is vertical 

motion. 

b)  Cylindrical co-ordinate robot: The cylindrical co-

ordinate robot is a variation of the Cartesian robot. 

This robot is a variation of the column is able to 

rotate. 

c) Polar Co-ordinate robot: It consists of a rotary base, 

an elevation pivot, and a telescoping extend and 

retract boom axis. It works on the spherical co- 

ordinate system and offers greater flexibility. 

d) Joint arm robot: This resembles a robotic arm. It 

usually stands on a base on which it can rotate while it 

can articulate at the shoulder joint which is just above 

the base. 

 
 

Fig1: Configurations of robot 



Srinivas Reddy P et al                                                                                                            Dynamic Response of the Flexible Links and Joints of a Robot 

 

3105 |International Journal of Current Engineering and Technology, Vol.4, No.5 (Oct 2014) 

 

4. Robot manipulator motion 
 

Six degrees of freedom are intended to emulate the 

versatility of movement possessed by Human arm. It 

consists of 3 arm & body motions and 3 wrist motions. 

Vertical traverse, radial traverse, rotational traverse are 

arm and body motions and swivel, bend and yaw are the 

wrist motions. All robots are not equipped with the ability 

to move in all six degrees. 

 

 
 

Fig2: manipulator motions 

 

The major components of a robotic manipulator include 

the power conversion unit, the controller, sensory devices 

and manipulator. 

 Manipulator is integration of mechanical links 

connected by joints to form an open loop kinematic chain. 

 The controller will initiate & terminate the motion of 

components, store the data and permit the robot to be 

interfaced with the end users. 

 

5. Problem formulation 

 

To give the equations of motion for a robot manipulator, a 

uniformly distributed beam which is driven by a motor on 

one side through a flexible joint and a pay load on the 

other end is considered. 

 

 

 
Fig 3: flexible beam with a flexible joint 

 

The system has the following parameters: 

L = Length of the link 

E = Young’s modulus of the link 

I = Moment of inertia of the cross-section of the link 

ρ= density (mass per unit length of link) 

mp= mass of pay load 

Ip=moment of inertia of the payload 

Ir =moment of inertia of the rotor 

K = stiffness of the joint 

θ = the nominal position of the lonk with respect to the 

inertial frame XYZ 

β = the angle of the hub with respect to rotor due to joint 

deflection. 
 

The coordinate frame XYZ is the original inertial 

coordinate system with Z in vertical Direction, while 

X1Y1Z1 is the coordinate system attached to the hub, with 

Z1coincidingwith Z. 

 

a) Assumptions 

 

 Only the rigid motion and elastic deflection in the 

horizontal plane are considered. 

 The elastic deflection is small. 

 The radius of the joint hub and the pay load holding 

distance are ignored but their Moments of inertia are 

still taken into account. 

 Bernoulli-euler beam assumptions are used (rotary 

inertia and shear are taken into account). 

 The flexible joint is modeled as linear torsion spring. 

 

Based on the above assumptions, the motion of the link is 

a superposition of the link’s Gross motion and its 

transverse about its normal ride position. The position of 

any Point on the link is described by three quantities;  

represents the nominal position of the link with respect to 

the frame XYZ; β is the angle of the hub; and W (X1,t) is 

the deflection of the link measured from the line OX1. 

 For small  and β, the position of an arbitrary point X 

on the link is calculated as: 

 

Y(X,t)=X[θ(t)+β(t)]+W(X,t)                (1) 

 

The kinetic energy of the system is expressed as 

 

T =1/2Ir
2
+ ½ Ih (θ+β) 2+1/2 0∫

l
 ρ [X (+β)+δw/δt]

2
dx 

+1/2 mp[X(+β)+δw/δt] x=l +1/2 ip[(+β)+δ
2
w/δxδt]

2
x=l 

 

                  (2) 

The potential energy of the system is 
 

V=1/2kβ
2
+1/20∫

l
EI[δ

2
w/δx

2
]

2
dx                (3) 

 

The only non-conservative force exerted on the system is 

the joint torque ґ. Its virtual Work is 
 

δW=ґδ                     (4) 
 

Where δ is the virtual displacement of the rotor. 

 

By applying hamilton’s principle 
 

Δt1∫
t2

 (T-V+W)dt=0 
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A fourth order partial differential equation is obtained 

 

EI(δ
4
y/δx

4
)+ρ(δ

2
y/δt

2
)=0                 (5) 

 

With the boundary conditions 

 

At X=0, 

 

Yx=0=0.… (6a) 

(δy/δx)x=0–(+β)=0           (6b) 

 

At X=L 

 

EI(δ
3
y/δx

3
)x=l-mp(δ

2
y/δt

2
)x=l=0         (6c) 

 

EI(δ
2
y/δx

2
)x=l+Ip(δ

3
y/δxδt

2
)x=l=0             (6d) 

 

In additional, two dynamic equations can be established 

for rotor and the hub. 

 

For the rotor: 

 

T+Kβ=Ir”               (7) 

 

For the hub 

 

EI(δ
2
y/δx

2
)x=0–Kβ=ih(”+β)           (8) 

 

To derive the natural vibration modes, ґ is dropped from 

the equation (7), thus, the Equation of motion of the rotor 

is 

 

”=K/Ir(β)                (9) 

 

differentiating the boundary conditions (6b) twice with 

respect to time and then substituting the result into 

equation (8), the following equation is obtained. 

 

β=EI(δ
2
y/δx

2
)X=0-Ih/K(δ

3
y/δxδt

2
)x=0       (10) 

 

b) Eigen Value Problem 

 

Assume the harmonic motion of the link given by 

 
Y(x,t)=(x)cosωt                 (11) 

 

Where ϕ (x) is the mode shape function of the link 

expressed in the coordinate system XYZ, and ω is the 

natural frequency. The motion of the flexible joint can be 

obtained From equation (10) as follows 

 

Β=1/K[EI”(0)+Ihω
2
’(0)]cosωt            (12) 

 
Equation (12) is then substuted into equation (9) to get the 

motion of the rotor 
 

”=1/Ir[EI”(o)+Ihω
2
’(0)]cosωt       (13) 

 

the solution to equation (13) is 

 

Ø(t)=Hcosωt+c1t+c2                (14) 

Where H is given by 

 

H=-1/Ir[(EI/ω
2
)”(0)+Ih’(0)]         (15) 

 

And C1 and C2 are integral constants. 

 

For a flexible link, two types of natural modes are usually 

considered: the unconstrained and the constrained modes 

of vibration (20). The unconstrained modes are defined as 

the Modes of the link with all external influences 

removed. These modes correspond to the Motion of a 

flexible link in the free space (17).  

 The constrained modes are defined as those when rigid 

body is constrained or fixed in an inertial frame. The 

constrained modes are quite natural for a flexible link, 

rigid-joint system where the links are controlled by 

actuators. In this paper, the constrained modes are 

considered for the flexible-link, flexible-joint system. To 

derive the constrained modes, the rotor is fixed, which 

means that Ø=0 

 

The characteristic equation of the problem can be derived 

as 

 

B1SCh+B2CSh+B3CCh+B4SSh+B5=0      (16) 

 

Where a shorthand notation S= sinλL, C =CosλL,  

 

Sh=Sinhλl,andch=coshλl is usedλ is expressed as 

 

λ
4
=ρω

2
/(EI)             (17) 

 

Bi in in the equation (16) has following forms 

 

B1=b1+b2-b3+b1b2b3              (18a) 

 

B2=b1-b2+b3-b1b3-1               (18b) 

 

B3=b1b2-2b1b3-1               (18c) 

 

B4=2b2b3-1                (18d) 

 

B5=-b1b2-1                (18e) 

 

Where 

 

B1=1/3Kipγ
3
                (18f) 

 

B2=kmpγ                 (18g) 

 

B3=(γ)/[1/3Kihγ
4
-Kk]               (18h) 

 

Kk,Kih,Kmp,and Kip are the relative stiffness of the joint, 

relative moment of inertia of the hib, relative mass of the 

payload, and relative moment of inertia of the payload 

respectively. They are all non-dimensional parameters 

with respect to the beam, defined by 

 
Kk=KL/EI,Kih=Ih/Ih,Kmp=mp/PL.Kip=Ip/Ib     (19) 

 

Where Ib is the moment of inertia of the beam given by 
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Ib = (1/3)ρ L
3
. is the root of the characteristic equation (16) 

defined by 

 

γ=λL               (20) 

 

which is also non-dimensional parameter. 

 

Substuting [(18a) – (18h)] into (16), the characteristic 

equation can be expressed in the following form: 

 

Kk – 1/3 γ
4
Kih= 

 

(3-KmpKipγ
4
)(S Ch – C Sh) +2 Kipγ

3
C Ch+6KmpγSShγ 

____________________________________________ 

3(C Ch +1) – Kipγ
3
(S Ch +C Sh) – 3Kmpγ (S Ch – C Sh) –

Kmp Kipγ
4
(C Ch -1) 

 

It can be shown that if the payload and hub are ignored, 

i.e.Kmp =0, Kip =0, Kih=0, 

 

Equation (21) reduces to the characteristic equation of the 

classic pinned-free beem. 

 

Tan γ =tanhγ 

 

When Kk =0 (zero stiffness), and to the characteristic 

equation of the classic clamped-Free beam. 

 

1+cosγcoshγ =0 

 

When Kk=∞ (infinite stiffness). 

 

The mode shape of the flexible –link, flexible-joint system 

is derived as 

 

Φ(x) = C[(cosλx – coshλx) + ɛ (sinλx –sinhλx) +δ(sinλx + 

sinhλx)]              

                (22) 

Where C is a constant, and ɛ and δ are given by 

 

δ =3γ/(Kihγ
4
–3Kk)               (23a) 

 

ε =- 

3(C+Ch)+δ[3(S-Sh) +γ
3
 Kip(C+ Ch)] – γ

3
 Kip + (s +Sh) 

_______________________________________________ 

3(S+Sh) + γ
3 
Kip(C – Ch) 

 

The root γ reflects the natural frequency ω. Their 

relationship can be determined from equations (17) and 

(20) as follows: 

 

ω=γ
2
/L

2
√EI/ρ             (24) 

 

6. Program 

 

#include<math.h> 

#include<conio.h> 

#include<stdio.h> 

Void main( ) 

{ 

Double i, x, y; 

IntI,j, count; 

 

Double klarr[4]={0.0,0.05,0.,0.5}; 

Double klarr[5]={0,1,20,100,99999}; 

 

Clrscr( ); 

For(1=0;1<4;1++) 

{ 

For(j=0;j<5;j++) 

{ 

For(i=0.0;i<11;i+=0.001) 

{ 

X=klarr[1]*pow(1,4)/3.0; 

X=kkarr[j]-x; 

Y=i*(sin(i)*cosh(i)-cos(i)*sinh(i))/cos(i)*cosh(i)+); 

If((y-x)<0.000000) 

Printf(“0/0d”,i); 

 

} 

} 

} 

} 

 

7. Mode Analysis 

 

The influences of different parameters, including joint 

stiffness Kk, hub inertia Kih, pay Load mass Kmp and load 

inertia Kip, are investigated. For convenience, rewriting 

the Characteristic equation as 

 

Kk=1/3 γ 4Kih+G                      (25) 

 

Where 

 

G=γ* 

 

(3-KmpKipγ
 4

)(S Ch-CSh) -2Kip γ
 3

CCh + 6Kmp γSSh 

_______________________________________________ 

3(C Ch +1) – Kip γ
 3

(s Ch +CSh) – 3Kmp γ (S Ch – C Sh) –

KmpKip γ
 4
(C Ch-1)                      

                 (26) 

8. Effect of Joint Stiffness Kk 
 

The relative joint stiffness defined in equation is a non- 

dimensional parameter representing the relative stiffness 

of the joint with respect to that of the beam. Its physical 

Meaning can be explained by studying a flexible –joint, 

rigid-link system, as shown in fig. 2(a),if the angular 

displacement of the link caused by a torque M is α1, the 

joint stiffness is K=M/ α1 

 For a rigid joint, flexible-link system, the angular 

displacement α2of the link at the free end, under the action 

of the same torque M,isα2= (ML)/ (EI) 

 By rearranging the above equation, the stiffness of the 

link, in the sense of the angular displacement at the end 

point, is obtained as 
 

(EI)/L = M/ α2 

 

Thus the relative joint stiffness can be expressed by 

 

Kk = (KL)/ (EI) = α2/ α1 
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Equation (27) indicates that relative joint stiffness Kk is 

equal to the ratio of angular displacement α2 of the rigid-

joint, flexible link system. When Kk=1 the flexible joint 

and the flexible link are said to have the equivalent 

stiffness. In case α1= α2, means that a torque applied to the 

flexible-Joint, rigid-link system will produce the same 

angular displacement at the end point of the link as the 

torque is applied to the system. 

 

 
 

Fig 4:Kih=0, kmp=0, kip=0 

 

Table1: Characteristic rootγ [Kih=0, Kmp=0, Kip=0,] 

 
Mode Kk=0 Kk=1 Kk=20 Kk=100 Kk=∞ 

1 0 1.2479 1.7912 1.8568 1.8751 

2 3.9266 4.0311 4.35127 4.6497 4.6941 

3 7.0686 7.1341 7.5863 7.7827 7.8548 

4 10.210 10.2566 10.6609 10.8976 10.9955 

 

 
 

Fig 5:Kih=0.1, kmp=0, kip=0 

 

Table2: Characteristic rootγ [Kih=0.1, Kmp=0, Kip=0,] 

 
Mode Kk=0 Kk=1 Kk=20 Kk=100 Kk=∞ 

1 0 1.3412 1.8264 1.9312 1.9612 

2 3.2146 3.2584 4.2241 4.3156 4.4112 

3 5.1161 5.2163 5.6121 7.3412 7.8421 

4 7.9112 7.9232 7.9432 8.0012 11.1324 

 

Fig4 illustrates the effect of the relative joint  stiffness Kk 

on the first four roots γi, Where Kk varies from 0.1 to 

1000.four cases are studied for Kih =0,0.05,0.1 and 0.5 

Respectively, with zero payload (Kmp =0, Kip =0). In case 

of Kih =0, the system Consisting of a simple beam 

supported by a torsion spring is the simplest flexible-link, 

Flexible joint system. The value of γi for Kih =0 and Kih 

=0.1 are listed in table 1 and table 2 respectively. The 

roots for Kk=0 corresponding to the frequencies of the 

pinned-free beam, where the zero root implies the rigid 

body mode. The roots for Kk =∞ corresponding to the 

frequencies of the clamped-free beam. 

 In order to study the sensitivity of Ɣ with respect to 

Kk, equation (25)is differentiated With respect to Kk, and 

the following equation is obtained. 

 

Δy/δKk=3/(4γ
3
Kih+3δG/δγ)                (28) 

 

Define the sensitivity index of γ with respect to Kkby(21) 

Sk = (%change in γ)/ (%change in Kk) = (δ γ / γ)/(δKk/Kk)             

 

                     (29) 

In follows from (28) that 

 

Sk=Kk/γ*[3/ (4γ
3
Kih+3δG/δγ)]        (30) 

 

The sensitivity index Sk for the above-mentioned four 

causes is shown in fig.6.  

 

 
 

Fig 6:Kih=0.05, kmp=0, kip=0 
 

Table3: Sensitivity Index Sk[Kih=0.05, Kmp=0, Kip=0,] 

 
Mode Kk=0 Kk=1 Kk=20 Kk=100 Kk=∞ 

1 0.25 0.2019 0.042 0.0096 0 

2 0 0.0225 0.0309 0.009 0 

3 0 0.0085 0.0239 0.0085 0 

4 0 0.0043 0.0186 0.008 0 

 

The following conclusions can be drawn from the 

simulation results 
 

1. Natural frequencies of the constructed system increase 

monotonically with the joint stiffness Kk and the simulated 

first four frequencies have the same tendency. This is in 

Contrast with the work by Xi and fenton on the 

unconstructed rotor beam system. In their work not only 

different frequencies have different tendencies, but also 

the same frequencies has different tendencies (namely, 

frequencies are not monotonic) 

 
2. Natural frequencies approach constant values when Kk 

tends to infinity. The constant values are the frequencies 

of the clamped –free beam. Rewriting the equation (29) as 
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y/δkk=(y/Kk)*Sk                 (31) 

 

3. The fundamental frequency is relatively sensitive to the 

joint stiffness Kk when Kk is small, but is insensitive when 

Kk is large. It should noted that the sensitivity index of 

S
1
=[δω/ω] / [δKk/Kk] 

 

Substuting quation (24) into the above equation yields 

S
1
=2*[δγ /γ] / [δKk/Kk] = 2Sk 

 

4. Even as small flexibility (large stiffness) of the joint can 

significantly affect the system frequency. The frequency 

error caused ignoring the joint flexibility, 

Error = [1-[{(ω)Kk}/{(ω)Kk= }] 

 

Using equation (24) the above equation can be expressed 

as 

Error=1-[(γKk)/(γKk= )
2
]           (32) 

 
Effect of Hub inertia Kih : 

 

Relative hub inertia Kih defined by(19) ,is the ratio of the 

inertia of the hub to that of the beam. A large Kih means 

relatively large hub inertia and relatively small beam 

inertia, and vice-versa. Differentiation of equation (25) 

with respect to Kih yields 

The following equation: 

 

δγγ
4
 

=---------------------- 

δKih          4γ3KIh + 3δG/δγ 

 

similarly to (29), the sensitivity index of Ɣ with respect to 

Kih is defined as 

 

δγ/γγ
3
Kih 

Sih = _________ = - _____________ 

δKih/Kih4γ
3
Kih + 3δG/δγ                             (33) 

 
fig 7 illustrates the effect of relative hub inertia of the first 

four roots γi, where Kih varies from 0.01 to 100 . Four 

cases are studied for Kk = 0.1,1.0,20 and 100. The 

sensitivity index Sih for these four cases is shown in fig 6 

.the values of Ɣ and Sih for case of Kk = 10,Kmp =0 and Kip 

=0 are listed in tables respectively. 

 

 

 

Fig 7:Kp=0.1, kmp=0, kip=0 

Table4: Characteristic rootγ [Kih=10, Kmp=0, Kip=0,] 

 
Mode Kk=0 Kk=0.01 Kk=0.1 Kk=1 Kk=∞ 

1 1.7227 1.7224 1.7190 1.6803 0 

2 4.3995 4.3753 4.0411 2.5914 1.8751 

3 7.4511 7.1059 5.2076 4.7253 4.6941 

4 10.5218 9.0634 7.9244 7.8610 7.8548 

 

The following conclusions are drawn from simulation 

results 

 

1. Natural frequencies decrease with the hub inertia Kih 

and approaches constantvalues with Kih tends to infinity 

the constant values of the frequenciesof the clamped-free 

beam. Kihgoes to infinity fundamental frequency 

approaches zero, corresponding to rigidbody mode. 

 

2. Fundamental frequency is not sensitive to hub inertia 

when Kih< 1. In this case the natural frequencies are 

almost constant and the sensitivity index is small 

 

8. Effects of payload mass kmp and payload inertia kih: 

 

Relative payload mass Kmp is the ratio of payload mass to 

the beam mass. Relative payload inertia Kip is the ratio of 

the payload inertia (with respect to its mass Center) to the 

beam inertia (with respect to the joint). Large Kmp and Kip 

indicates relatively large payload, and vice versa. When a 

flexible robot is holding a payload, will the payload 

significantly affect the system frequencies? How will the 

frequencies change with different payload? 

 In order to answer this question, the effects of payload 

are simulated. The characteristics roots γ versus the 

payload mass Kmp , where Kmp varies from 0.1 to 100. 

Four cases are simulated for Kk =0.1, 1.0, 10 and with the 

hub inertia andpay load inertia constant (Kih=0.1,Kip=0). 

The first three cases corresponded to the flexible-joint, 

flexible-link system with different joint stiffness, while the 

case corresponds to a rigid joint, flexible-link system. 

Figure8 illustrates the characteristic roots varies the 

payload inertia kip where Kip varies from 0.01 to 10. In all 

simulated cases, Kk takes different values:0.1,1.0,10 and, 

and Kih and Kmp remain constant (Kih=0.1, Kmp=0.2). 

 

 
 

Fig 8: Kk=0.1, Kmp=0.1, Kip=0 

 

From the simulation results the following conclusions can 

be drawn 
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1. Payload mass affects the fundamental frequency, but 

does not significantly affect higher frequencies regardless 

of the flexible link, flexible-joint robots or the flexible link 

rigid joint robot. 

2. The fundamental frequency insensitive to small payload 

inertia, but relatively sensitive to a large inertia; higher 

frequency are in sensitive to large payload inertia, but 

sensitive to a small inertia. 

3. Among the first two frequencies, the fundamental 

frequency is mainly effected by the payload mass Kmp, 

while the second frequency is mainly effected by payload 

Inertia Kip. This conclusion is useful in many engineering 

applications, while the flexible dynamics can be 

approximately represented by the first two modes. 

 

This observation shows that for higher frequencies, 

payload inertia has a stronger effect then payload inertia 

does. For the fundamental frequency, payload mass has 

stronger effect then payload inertia does. This holds 

regardless of the joint Stiffness. 

 

Conclusions 

 

This paper presents the procedure for the extraction of the 

dynamic equations for a robot manipulator and also assists 

to check the effect of joint flexibility on the system 

frequencies. After studying the mode characteristics of the 

system, the following conclusions are made: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. System frequencies are effected significantly even for 

a small joint flexibility. 

2. The hub inertia or the payload inertia does not affect 

the fundamental frequency. 

3.  For a given flexible system, the fundamental 

frequency is mainly affected by the Payload mass, 

while the second frequency is mainly affected by the 

payload Inertia. 

 

Using this approach, analysis for a multilink robot 

manipulator can be carried out. And controller design can 

be done using the observations of this paper. 
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