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Abstract 

  

Automobiles are indispensable in our modern society, and vehicle safety is consequently very important in our everyday 

life. In the past few decades, vehicle dynamics control systems have been developed to improve control and safety of 

vehicles. Vehicle dynamics control systems seek to prevent unintended vehicle behavior through active control and help 

drivers maintain control of their vehicles. The main function of electronic stability control is to provide enhanced 

stability and control not only when accelerating and braking but also when cornering and avoiding obstacles. These 

advanced technologies of has been developed in the pursuits of increased safety, improved performance and cost 

efficiency. A new method of the vehicle parameters estimation by combining GPS measurements with a vehicle dynamics 

model based estimator. This method presents a problem because many of the vehicle parameters maybe unknown and or 

change over time. Therefore, a method to identify when a correct estimator model is being used must be developed. The 

new estimation algorithm, which is based on using GPS in a vehicle dynamics model based estimator, is tested both in 

simulation and on expected data.  
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1. Introduction 

 
1
 The automotive industry has made significant 

technological progress over the last decade or so 

concerning active vehicle stability control, and hence 

improved safety, by developing and introducing 

microprocessor control systems. Among these controllers 

are systems such as the anti-lock braking system, active 

roll control, active front steering and electronic stability 

programs. Effective operation of each of these systems 

depends on an accurate knowledge of the vehicle states, 

such as velocity, lateral acceleration, yaw rate, as well as 

vehicle and tire side slip. Many of the estimators work 

only with a reduced number of states or a reduced vehicle 

model, such as a bicycle model. Approaches can be found 

that use this model for the estimation of side slip angle and 

yaw rate or for lateral acceleration, yaw rate and tire slip 

angles. 

     The previous methods of vehicle parameters estimation 

have all been limited either by gyro errors, road bank, or 

model accuracy. The new estimation algorithm, which is 

based on using GPS in a vehicle dynamics model based 

estimator, was tested both in simulation and on expected 

data. Additionally, it is shown the addition of a GPS data 

in sideslip estimation in the presence of a banked turn. 

This vehicle dynamics model based estimator using GPS 

measurements provides accurate and observable estimates 

of sideslip, yaw rate, steering angle, lateral and 

longitudinal acceleration, lateral and longitudinal velocity 
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and normal loads on each tire by generating path of 

vehicle by using GPS data. 

 

2. Literature Survey 

 

Welch and Bishop provided a practical introduction to the 

discrete Kalman filter. This introduction includes a 

description and some discussion of the basic discrete 

Kalman filter, a derivation, description and some 

discussion of the extended Kalman filter, and a relatively 

simple (tangible) example with real numbers & results (G. 

Welch et al, 2006).  

     Daily and Bevly developed a method for using global 

positioning system (GPS) velocity measurements to 

improve vehicle lateral stability control systems. GPS can 

be used to calculate the sideslip angle of a vehicle without 

knowing the vehicle model. This measurement is 

combined with other traditional measurements to control 

the lateral motion of the vehicle. Noise estimates were 

provided for all measurement systems to allow the sensors 

to be accurately represented. Additionally, a method to 

calculate the lateral forces at the tires was presented. They 

showed that the tire estimation algorithm performs well 

outside the linear region of the tire. Results for the 

controller and force calculations were shown using a 

nonlinear model to simulate the vehicle and the force 

calculations were validated with experimental 

measurements on a test vehicle (R. Daily et al, 2004). 

     Anderson and Bevly developed a method for estimating 

key vehicle states and sensor biases using Global 

Positioning System (GPS) and an Internal Navigation 
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System (INS). They used two Kalman filters, a model 

based filter and a Kinematic filter. These are used to 

integrate the INS sensors with GPS heading and velocity 

to provide a high update rate of the vehicle states and 

sensor biases. Additional key vehicle parameters, such as 

tire-cornering stiffness, are identified and used to correct 

the model based estimator. The vehicle estimated states 

were compared with values predicted with a theoretical 

model (R. Anderson et al, 2004).  

     Rodríguez and Gómez presented alternative solution to 

combine the data provided by different positioning sensors 

using a Kalman filter. The described procedure also uses 

an odometric estimation of the mobile position, based on 

the kinematic model of the agricultural vehicle. Three 

different implementations of the Kalman filter are 

described, using different sensor combinations but based 

on the same vehicle model (M. Rodríguez et al, 2009). 

     Bevly et al. developed a method of estimating vehicle 

sideslip by integrating inertial sensors from a stability 

control  system with velocity information from a single 

antenna GPS receiver using a planar vehicle model and 

Kalman filters (D. M. Bevly et al, 2000). 

     Imsland et al. studied observers for nonlinear systems, 

and showed that the error dynamics for a nonlinear 

Unknown Input Observer (UIO) has the same structure as 

the error dynamics of a nonlinear observer without 

unknown inputs. This result was first used to provide 

synthesis inequalities for UIOs for a class of nonlinear 

systems, and secondly, to inspire the design of an observer 

for estimation of vehicle lateral velocity on banked roads 

(L. Imsland et al, 2005). 

 

3. System Design 

 

Scenarios 

 

The Kalman filter is a set of mathematical equations that 

provides an efficient computational (recursive) means to 

estimate the state of a process, in a way that minimizes the 

mean of the squared error. The Kalman filter is very 

powerful in several aspects as it supports estimations of 

past, present, and even future states, and it can do so even 

when the precise nature of the modeled system is 

unknown. 

     The new estimation algorithm, which is based on using 

GPS in a vehicle dynamics model based estimator, was 

tested both in simulation and on expected data. 

Additionally, it is shown the addition of a GPS data in 

sideslip estimation in the presence of a banked turn. This 

vehicle dynamics model based estimator using GPS 

measurements provides accurate and observable estimates 

of sideslip, yaw rate, steering angle, lateral and 

longitudinal acceleration, lateral and longitudinal velocity 

and normal loads on each tire by generating path of the 

vehicle by using GPS data. 

 
Kalman Filter  

      
Kalman filter (KF), known as a linear estimator, is named 

after Prof. Rudolph E. Kalman. It has been developed a lot 

after the first described in technique papers by Swerling P. 

(1958), Kalman R. E. (1960) and Kalman R. E., Bucy P. 

(1961). In technology field, Kalman filter is widely used to 

guide, navigate and control vehicles as well as aircrafts.  

Actually, the Kalman filter is an algorithm that estimates 

unknown variables by the help of measurements with 

noise. The Kalman filter is a very powerful tool when it 

comes to controlling noisy systems. The basic idea of a 

Kalman filter is Noisy data in and hopefully less noisy 

data out. Based on prior knowledge about the noise in the 

estimation, the Kalman filter minimizes the mean square 

error of the estimation.  

 
 

Figure 1 Discrete Kalman Filter Cycle 

 

Theoretically the Kalman Filter is an estimator for what is 

called the linear-quadratic  problem, which is the problem 

of estimating the instantaneous “state” of a linear dynamic 

system upset by white noise by using measurements 

linearly related to the state but corrupted by white noise. 

The resulting estimator is statistically optimal with respect 

to any quadratic function of estimation error (G. Welch et 

al, 2006). 

     The Kalman filter estimates a process by using a form 

of feedback control: the filter estimates the process state at 

some time and then obtains feedback in the form of 

(noisy) measurements. As such, the equations for the 

Kalman filter fall into two groups: time update equations 

and measurement update equations. The time update 

equations are responsible for projecting forward (in time) 

the current state and error covariance estimates to obtain 

the a priori estimates for the next time step. The 

measurement update equations are responsible for the 

feedback i.e. for incorporating a new measurement into the 

a priori estimate to obtain an improved a posteriori 

estimate. 
 

Kalman Filter Estimator 
  

Estimated vehicle parameters together with estimated 

sensor biases open the door to estimate vehicle states 

correctly even when GPS is not available. Parameterized 

vehicle models with properly estimated parameters can 

produce correct vehicle state estimates using INS sensors 

calibrated by the sensor bias estimates. This concept is 

illustrated in Figure 2. When GPS is available, represented 

in the left side of the figure, vehicle parameters and as 

well as vehicle states. When GPS is not available, the 

estimated vehicle parameters and sensor biases are used as 

inputs to the estimation process to estimate vehicle states 

without help of GPS measurements. 

     In addition, based on the estimated parameters and 

states, this thesis presents a new method for separating 
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road bank and suspension roll angle using a disturbance 

observer and a vehicle dynamic model. While a lumped 

value of road bank and suspension roll can be measured 

using a two-antenna GPS system and the lumped value can 

be used to compensate the acceleration measurements, the 

separation of these two angles could be especially 

beneficial to vehicle rollover warning and avoidance 

systems. Since a small lumped value does not necessarily 

mean a small road bank angle, a vehicle may experience a 

significant road bank angle even though the sum of the 

two angles is small (D. M. Bevly et al, 2006). 

     Although the suspension roll and road bank angle have 

similar influences on the roll and roll rate measurements, 

they play very different roles in the vehicle dynamics. 

While the road bank angle can be treated as a disturbance 

or unknown input to the vehicle, the suspension roll angle 

is a state resulting from the road bank angle and other 

inputs, governed by vehicle dynamics. This implies that a 

parameterized vehicle dynamic model could conceivably 

be used to separate the suspension roll and road bank 

angles. A dynamic vehicle model includes suspension roll 

as a state and road bank as a disturbance. 

 

 
 

Figure 2Estimation with GPS Availability  
 

The disturbance observer is then implemented using the 

measurements of the sideslip angle, yaw rate, roll rate, and 

total roll angle which is the sum of road bank and 

suspension roll angles and other vehicle parameters from 

the GPS/INS system which then used to control stability of 

vehicles (C. McMillan, 1994). 
 

Vehicle State and Parameters Estimation 
  

This paper investigates the use of several GPS sensor 

configurations and levels of vehicle dynamics modeling 

fidelity in the estimation of vehicle states including 

sideslip angle. The vehicle yaw information is obtained 

from a two-antenna GPS system that not only eliminates 

issues of drift in attitude estimation but also provides a 

measurement of the roll angle. Using a two-antenna GPS 

system, this thesis consider the influence of road grade, 

bank angle, and suspension roll on GPS-based vehicle 

sideslip and longitudinal velocity estimates derived from a 

vehicle dynamics model and Kalman filter. The combined 

system fuses a road grade estimate derived from GPS 

velocity and the roll information from the two-antenna 

system with an appropriate roll center model of the vehicle 

since the two antennas are placed laterally. Comparisons 

with a calibrated vehicle model show excellent correlation 

and the relative constancy of the sensor bias estimates 

demonstrates that no significant dynamics are ignored. 

From a practical standpoint, this paper also describes a 

number of refinements to calibrate sensitivity variation 

and cross-coupling of inertial sensors (B. Hofmann-

Wellenhof et al, 1993). 

The accurate estimates of the vehicle states are available at 

a level previously unavailable and these estimates yield a 

new opportunity to estimate key vehicle parameters, such 

as vehicle mass, tire cornering stiffness, under steer 

gradient, roll stiffness, and roll damping coefficient. Once 

vehicle parameters are precisely estimated, parameterized 

vehicle dynamics models with properly estimated 

parameters can be used for a wide variety of applications 

including highway automation, vehicle stability control, 

and rollover prevention systems. Aiming to provide 

parameter estimates precisely enough to be used for most 

vehicle dynamics and control problems, this paper 

investigates vehicle parameter estimation schemes. 

 
4. Vehicle Modeling 

 

The subject “Vehicle Dynamics” concerned with the 

movements of vehicles on a road surface. Dynamic 

behavior is determined by the forces impulse on the 

vehicle from the tires, gravity and aerodynamics. The 

vehicle dynamics simulation based on ten differential 

equations which are simultaneously solved. The program 

requires (δ,     ,    , and u) the inputs of steer angle, 

brake force front, brake force rear, and longitudinal or 

forward velocity. There ten differential equations provide 

the parameters required to accurately describe the vehicle 

position, velocity and orientation in 3-D space. For single 

mass representation, the vehicle is treated as a mass 

concentrated at its center of gravity as seen in figure 3.  

     On board, the vehicle motions are defined in reference 

to the right-hand orthogonal coordinate system i.e. the 

vehicle fixed coordinate system has the coordinates at 

center of gravity (CG) and travels with vehicle. By SAE 

convention the coordinates x is forward and on the 

longitudinal plane of symmetry, y is lateral out the right 

side of vehicle, z is downward with respect to the vehicle, 

P is roll velocity about the x axis, q is pitch velocity about 

y axis, and r is yaw velocity about z axis. 

 
 

Figure 3 SAE Vehicle Axis System 

 

The differential equations are simultaneously solved 

yielding the equations 1-10 

 Once the Above differential equations are solved for 

they can be used to calculate the speed and side slip 

angles.  

 The advantages and disadvantages of these models in 

the aspect of modeling are also indicated. The advantage 

of the linear model is the simple approximation of the real 

vehicle. 
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                               (7) Longitudinal Velocity, 

 
  

  
 =  ̇                                    (8) Pitch Angle velocity, 

 
  ̇

  
 = 

 (         )            ̇

   
                      (9) Angular Velocity about Pitch Axis, 

 
  

  
 = r                                 (10) Heading Angle, 

 

The model works properly with the regular operating 

conditions such as small steering angles and low lateral 

acceleration. The main disadvantage of nonlinear model is 

the difficulty to couple it with a linear driver models 

represented as transfer functions. Depending on the 

problem, the right model may save the cost associated 

with computation and design of the efficient controllers 

(R. Anderson et al, 2004). 

     Two important states of the vehicle affecting the path 

following control are the lateral position and head angle of 

the vehicle. A linear bicycle model provides sufficient 

feedback for the driver to maintain the vehicle following a 

path. The increased complexity arising from the 

nonlinearity of the vehicle model raises difficulties in the 

modeling and enlarges the computational time. Moreover, 

most of passenger cars have the rollover thresholds 

significantly greater than 1.0g, while light trucks, vans and 

SUVs threshold range from 0.8 to 1.2g and for that of a 

heavy load truck lies well below 0.5g (R. Daily et al, 

2004). 
 

5. Discussion 

 

In this paper it is assumed that there exists a measurement 

of GPS data of the path followed by the vehicle on the test 

track which then will be used by the observer. Since there 

is no sensor to measure the lateral velocity, this state is 

estimated by integrating the estimated  lateral velocity 

change. Therefore the velocity change rate is required to 

be estimated accurate in order to avoid errors due to noise 

when integrating.  

     The objective of the research leads to the vehicle 

dynamics model where the vehicle dynamics equations are 

mainly considered. The model assumes that there is a 

minor roll effect on driving a vehicle so that it can be  

 

neglected at the benefit of a much simplified directional 

model. Also, the yaw rate is the time derivative of the yaw 

angle ( ). Yaw angle is experienced when the vehicle is 

taking turn. A yaw rate sensor, also called gyro-meter, 

measures the angular velocity of the chassis along its 

vertical axis. Accurate information about the yaw rate is 

for many reasons very important and modern cars have 

therefore often a yaw-rate sensor. The roll angle also 

needed to compensate the lateral acceleration sensor. The 

roll is not possible to measure, and very few vehicles are 

equipped with a roll rate sensor, so the estimation has to 

entirely be based on the vehicle dynamics estimator 

model. Pitch angle is the angle between the vehicle X-axis 

and ground plane and is denoted by  . If the vehicle 

changes its longitudinal velocity the chassis will pitch. It 

occurs at the acceleration or braking of the vehicle. By the 

same reasons as for the roll angle, the pitch angle will 

affect the load transfer which is used by the tire model. 
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