

 2476 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Comparative Study of Multi-Threading Libraries to Fully Utilize Multi

Processor/Multi Core Systems

Priya Mehta
Ȧ*

, Sarvesh Singh
Ȧ
, Deepika Roy

Ḃ
 and M. Manju Sarma

Ḃ

ȦComputer Science and Engineering, Jayoti Vidyapeeth Womens University, Jaipur, India
ȦNational Remote Sensing Centre, ISRO, India

Accepted 10 July 2014, Available online 01 Aug 2014, Vol.4, No.4 (Aug 2014)

Abstract

The development of multi-core technology has led to a great shift from sequential programming to parallel

programming. This has made substantial challenges to software industries and government organizations to take full

advantage of the performance intensification offered by the multi core systems. This paper aspires to compare and

analyze the parallel computing ability offered by OpenMP(Open Multiprocessing), Intel Cilk Plus and MPI(Message

passing Interface). Some proposals are also provided in parallel programming. The parallel programming features

provided by these libraries are also studied and compared. The study is done by parallelizing problems related to Remote

Sensing data processing which is large in volume and whose sequential processing is very much time consuming. This

makes it pertinent to speed up the processing times by introducing parallelism in processing and for efficient utilization

of multi processor multi core systems. The paper aims at exploring these libraries and studying the speed up achieved by

using parallel processing and Data Parallelism paradigm.

Keywords: Multi-Core , Multi-CPU, OpenMP, Intel Cilkplus, MPI, Data parallelism, Multi-threading

1. Introduction

1
 In this multi-core era both for programmer productivity

and performance there is lot of importance for serial

program parallelization (Minjang Kim, June 2013). In this

paper we have tried to bring about a comparative study of

the speedup achieved by converting time consuming

sequential processes into a multithreaded ones by using

OpenMP, Intel Cilkplus and MPI. The problem domain

comprises of problems related to processing of Remote

Sensing data of Indian Remote Sensing Satelites..For

parallelization in a shared memory system it is

considered that OpenMP and Intel Cilkplus are more

suitable and Hybrid parallelization by using the MPI is

more suitable on distributed memory system.

2. Problem description

Our problem domain contains problem related to pre-

processing of Indian Remote Sensing Satellite data. This

pre-processing involves initial processing of the RS data

before data product generation. The data volume of

Remote sensing satellites runs into GBs and sequential

processing of this data is very time consuming. Also the

multi-core multi-cpu system are not efficiently utilized by

the sequential processing .Thus it becomes pertinent to

employ parallel processing techniques for faster

*Corresponding author: Priya Mehta; Sarvesh Singh is working as

Asst. Prof; Deepika Roy and M. Manju Sarma are working as

Scientist/Engineer-„SD‟ Gr.Head,(SG) respectively.

processing and better turnaround time. This also leads to

better utilization of system resources in terms of

processing power and memory. We implemented

multithreading using OpenMP, Cilkplus and MPI on the

following three problems:

1) Histogram Equalization

2) Pattern search

3) Bayer Demosaicing

All these problems are data intensive and hence speedup

was achieved up by applying data parallelism.

3. Levels of parallelism

Manufacturers implement parallelism at several different

levels

1. Task level parallelism

2. Data level parallelism

3. Instruction level parallelism

4. Bit level parallelism.

This paper focuses on Data level parallelism. Data

parallelism is achieved when a huge data set is split into

smaller chunks and each processor performs the same task

on these chunks of data. In some situations, a single

execution thread controls operations on all pieces of data.

In others, same code but different threads control the

operation (Sreepathi Pai).

Priya Mehta et al Comparative Study of Multi-Threading Libraries to Fully Utilize Multi Processor/Multi Core Systems

2477 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

4. Multithreading Libraries used

4.1 OpenMP

OpenMP is a portable API for parallel programming on

shared-memory computer systems.The OpenMP API is

defined and updated by the OpenMP Architecture Review

Board (ARB), which consists of major hardware and

software vendors.OpenMP is targeted at shared-memory

multiprocessors such as the multicore CPUs found in

modern computer systems. code is easier to understand

and maybe more easily maintained

1) Hardware Platforms that supports OpenMP are

Vendor/source

Compiler Information operating system use

GNU

INTEL

GCC

C/C++
/Fortran

Free and open Source –

Linux,solaris,AIX,MacOSX,WINDO

WS,OpenMP 3.1 is supported GCC
4.7

Window,linux and MacOSX Compile

with -Qopenmp or just -fopenmp

Hardware platform required - INTEL, AMD, IBM, Cray,

Red hat, NEC, Oracle Corporation.

4.2 Cilkplus

Cilkplus is an extension to the C/C++ programming

language designed for multithreading parallel computing.

It is simple for programming development with well

structured analysis and verification of programs offered by

cilkplus (Sreepathi Pai). It has powerful tools like cilkview

and cilkscreen which add scalability and code analyzer

in cilkplus. It is also very convenient to detect race

conditions with these tools (Yuxiong He, 2010).

1) Hardware Platform that support Cilkplus are

Vendor/source Compiler
Information operating system

used

gcc G++
Free and open Source –
Linux,MacOSX,WINDOWS

INTEL

C/C++/

Fortran
ICC

ICPC

Window,linux and MacOSX

4.3 MPI

MPI is a message passing library typically used for

parallel and distributed computing. MPI addresses

primarily the message-passing parallel programming

model, in which data is moved from the address space of

one process to that of another process through cooperative

operations on each process. In this paper we have used

OpenMPI which is an open source, freely available

implementation of MPI

 Most MPI implementations consist of a specific set of

routines (i.e., an API)directly callable

from C, C++, Fortran and any language able to interface

with such libraries, including c#, Java or Python.

The advantages of MPI over older message passing

libraries are portability because MPI has been

implemented for almost every distributed memory

architecture and speed as each implementation is in

principle optimized for the hardware on which it runs.

MPI is more suitable for a distributed memory

communication environment.

5. Features of multithreading libraries

In this paper we implemented multithreading using three

types of libraries in C/C++ language in Linux

environment. Data Parallelism was implemented in each

of the problem. Our problem consists of applying the same

set of operation on each chunk of data and thus it yielded

very well to the Data Parallelism paradigm.

5.1 OpenMP

1) #pragma omp parallel

The pragma omp parallel is used to fork additional threads

to carry out the work enclosed in the construct in parallel

(Shen Hua1, 2013). The original thread will be denoted

as master thread with thread ID 0. #pragma omp

parallel spawns a group of threads, while #pragma omp

for divides loop iterations between the spawned threads.

Both things can be at once with the fused #pragma omp

parallel for directive . The number of threads created by

these compiler directives is equal to the number of

processing nodes. This number can be modified by using

certain environment variables or function calls given by

the library.

2) Reduction

Reduction (op : list) can be used inside a parallel or a

work-sharing construct: A local copy of each list variable

is made and initialized depending on the operator “op”

(e.g. 0 for “+”). Compiler finds standard reduction

expressions containing “op” and uses them to update the

local copy. Local copies are reduced into a single value

and combined with the original global value. The variables

in “list” must be shared in the enclosing parallel region.

5.2 Intel CilkPlus

cilk_for – It specifies that the iterations of a loop can be

executed in parallel.

cilk_spawn – It specifies that a function call can execute

asynchronously, without requiring the caller to wait for it

to return. This is an expression of an opportunity for

Priya Mehta et al Comparative Study of Multi-Threading Libraries to Fully Utilize Multi Processor/Multi Core Systems

2478 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

parallelism, not a command that mandates parallelism. The

Intel Cilk Plus runtime will choose whether to run the

function in parallel with its caller.

cilk_sync – This acts like a barrier, waiting for all

spawned children to complete before processing. There is

an implied cilk_sync at the end of every function that

contains a cilk_spawn.

1) Reduction

Converting a sequential program to a parallel program and

changing the for loop to a cilk_for causes the loop to run

in parallel, but creates a data race on the shared variable

which is updated by each thread. To resolve the race

condition, we make this shared variable a reducer which is

a variable that can be safely used by multiple threads

running in parallel. The library internally takes care of

avoiding race conditions on the shared variable.

5.3 MPI(Message passing interface)

We have used MPI_Send and MPI_Recv functions for

message passing between processors as there is no shared

memory between processes like OpenMP and Intel

CilkPlus. MPI_Comm_rank and MPI_Comm_size are first

used to determine the world size along with the rank of the

process. The master sends blocks of data to the workers

using MPI_Send function. A message is sent to a specific

process and is marked by a tag (integer value) specified by

the user. Tags are used to distinguish between different

message types a process might send/receive. It is crucial to

note that MPI_Send is a blocking call and will block till a

corresponding MPI_Recv is not found. So it is important

that the communication is optimized so as to prevent any

deadlocks. The receiving process calls MPI_Recv and

blocks until the data transfer is complete. Once the data is

distributed between the processes, they operate on it and

then send the result back to the master process for

consolidation (Chao-Chin Wu, 2012,vol. 60, no.1).

6. Hardware platform and system specification

We implemented our problem on a 4 CPU, 8 core

machine. So in total we had 32 cores available for parallel

processing. The system had 32 GB RAM. The operating

system was Red Hat Enterprises Linux version 5.6.

7. Result

We implemented parallelism in the below mentioned

problem types using three different parallelism libraries.

We have also done a comparative study of the speedup

achieved. The following are the problem description and

the speedup gains obtained.

7.1 Histogram Equalization

Histogram equalization is a technique for adjusting image

intensities to enhance contrast by using the image

histogram. An image histogram is a graphical

representation of the intensity distribution of an image. It

quantifies the number of pixels for each intensity value

considered. Histogram equalization is a method that

improves the contrast in image by stretching out the

intensity range. The following figures show the low

contrast image of Resourcesat-2 LISS-4 sensor with its

concentrated histogram.

Fig. 1 Original image and its histogram

The next figure shows the image after histogram

equalization. Its stretched out histogram after contrast

stretching is also shown.

Priya Mehta et al Comparative Study of Multi-Threading Libraries to Fully Utilize Multi Processor/Multi Core Systems

2479 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

Fig. 2 Image and its histogram after Histogram

equalization

The analysis was done on Resourcesat-2 LISS-4 sensor

image. As the data was very large, the processing time of

the sequential program was large as well. The use of

multithreaded libraries improved the speedup.

Multithreading was implemented using C/C++ using

OpenMP and CilkPlus.

 We also faced some race conditions while summing up

variables shared by threads and synchronization problems

between threads. Race condition was overcome by using

reducers. Synchronization issues were solved by

restructuring the code and introducing synchronization

constructs between threads. The time taken to run the

sequential and parallel codes is as shown in the following

table

Table 3 Result of Time taken and speedup achieved using

OpenMP and CilkPlus for Histogram Equalisation

Sequential Code Parallel Code using

OpenMP

Parallel Code Using

CilkPlus

Time

Taken

Speedup

Achieved

Time

Taken

Speedup

Achieved

36.201 sec

26.594

sec

1.36 16.251

sec

2.22

7.2 Patten Search

The aim of this problem was to search for a specific 4 byte

pattern in a file containing binary data. The pattern can

occur repeatedly in the data and the number of occurrences

of this pattern had to be counted and the positions where it

is found had to be marked. This problem was very much

time consuming as the input file was of 2GB size.

However the search logic had to be implemented

repeatedly for every line. Hence data parallelism approach

was followed here also.

 Race conditions were overcome by applying reducers.

The code was optimized and further improvement was

done by making each thread to read simultaneously from

the file using pread function call.

 In MPI, problem of deadlock faced due to blocking

send/receive was also overcome by restructuring the code.

Sequential Code Parallel Code using

OpenMP

Parallel Code Using

CilkPlus

Parallel code using MPI

Time Taken Speedup
Achieved

Time
Taken

Speedup
Achievd

Time
Taken

Speedup
Achieved

0m3.673 sec

0.987sec 3.721 0.677sec 5.425 4.247 sec 8.52

7.3 Bayer Demosaicing

Bayer demosaicing algorithm is a digital image process

used to reconstruct a full color image from the incomplete

color samples output from an image sensor overlaid with a

color filter array. A Bayer filter mosaic is a color filter

array (CFA) for arranging RGB color filters on a square

grid of photosensors. Its particular arrangement of color

filters is used in most single-chip digital image sensors

used in digital cameras, camcorders, and scanners to create

a color image. The filter pattern is 50% green, 25% red

and 25% blue, hence is also called GRGB or other

permutation such as RGGB. By using this filter, each

pixel will be assigned only a single color (i.e. either R or

G or B).

 In order to generate a useable image from this raw data

i.e. to assign all three colors(RGB) to a pixel, some

reconstruction is required . The process used to recover

this information is called demosaicing. This process

interpolates the missing color information from adjacent

pixels in order to generate a full color image. The

algorithm used here for demosaicing is Bilinear

Interpolation. The following image shows the RAW

image obtained from a sensor using Bayer filter.

Fig. 3 Raw Bayer Image

The following image shows the demosaiced image after

applying Bilinear Interpolation of pixel color values on the

input RAW image.

Fig. 4 Demosaiced Image using Bilinear Interpolation

Priya Mehta et al Comparative Study of Multi-Threading Libraries to Fully Utilize Multi Processor/Multi Core Systems

2480 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

Table 1 Comparing the features of openmp, cilkplus, and mpi

 Openmp Cilkplus Mpi

Compatibilty (comipler ,os)
 COMPILER-

GCC/ICC IN C

G++/ICC IN C++

 OS-
LINUX,SOLARISIS,

MACOSX,WINDOWS

 COMPILER

ICPC ,ICC,GCC

IA-32 and Intel® 64

architecture programs (32-bit

and 64-bit) that run on
Windows, Linux, and OS X

MPICC IN C

MPICXX IN C++

Open source or not YES YES YES

Hardware platform ,processor PROCESSOR-

INTEL,AMD,CRAY,REDHAT

WINDOW ,LINUX ,OS X WINDOW,LINUX

OSX

Type of parallism TASK AND DATA PARALLISM TASK AND DATA

PARALLISM

TASK PARALLISM

Language library or compiler

directive

COMPILER

DIRECTIVE –

Eg-#pragma omp parallel

LIBRARY ROUTINE

#include <omp.h>

int omp_get_num_threads(void)

ENVIROMENT VARIABLE
EG-export

OMP_NUM_THREADS=8

#pragma simd

header file #include<omp.h> #include<cilk.h> #include<mpi.h>

Table 2 Comparison between programming Technologies

 Multithreading libraries Openmp Cilkplus MPI

1.What is it ? API Language (Actully c++ Extension) API

2.Language supported C,C++,Fortran C

C ,C++,Fortran,Ada, python

3.Memory Shared Memory Shared Memory miser memory manager

Distributed Memory

4.granulity Fine Course /Fine Fine

5.syncronization Implicit Implicit/explicit explicit

6.Difficulty for programmer Easy Medium Medium

Since the bilinear interpolation has to be applied on each

pixel and for all the three colors, this takes time to

generate a full color image. To speed up the generation of

final full color image, multithreading and data parallelism

concept was applied here also.

Sequential

Code

Parallel Code Using

OpenMP
Parallel Code Using CilkPlus

Time

Taken

Speedup

Achieved
Time Taken

Speedup

Achieved

.670 sec .344sec 1.94 .298 sec 2.24

Conclusion

This paper explains comparative study of multithreading

libraries which is implemented on 4 CPU and 8 core

system with Linux platform in C/C++ language. Since the

problem deal with large volumes of data, hence the

processing time was also very long. To achieve faster

processing and optimize the use of multi cores system, we

implemented Data Parallelism using three different

libraries: OpenMP, Intel CilkPlus and MPI. We analyzed

the speedup achieved using these libraries. OpenMp is

only suitable to be used for multithreading in case of

shared memory system. It enables multithreaded

programming with quick and small processing with very

small overhead of coding. Spawning threads involves

including compiler directives provided by OpenMP. The

number of threads to be spawned will be decided by the

library depending on system specifications. Inter-thread

communication is also easy as threads have access to a

common shared memory. According to our experience

OpenMP is best geared for loop level parallelization. We

did not need to install any new compiler/library for

running OpenMP.

 CilkPlus gave the best results in all the three problems

that we analyzed. But for implementing parallelism using

CilkPlus we need Cilk Plus enabled compilers. This results

in overhead in terms of installing either latest version of

Intel Compilers or Cilk Support for GCC. CilkPlus also

provides efficient tools for analyzing the code for

scalability and race conditions which assist the

programmer to track down bugs faster. It is suitable for

both task and data parallelism.

 MPI model is a message passing model best suited for

programs which do not have complex communication

process. In our problems it took more time as compared

to other two libraries as it spent more time in passing the

data between processes. MPI is suited for large system

with long term processing. Each of the parallel

programming frameworks has their own strengths and

Priya Mehta et al Comparative Study of Multi-Threading Libraries to Fully Utilize Multi Processor/Multi Core Systems

2481 | International Journal of Current Engineering and Technology, Vol.4, No.4 (Aug 2014)

weaknesses. The framework that offers best performance

depends on both on the kind of application and how much

the code has been tuned for a particular platform.

Future scope

There are many ongoing development on openMP from

openMP(2011a) and there are many scope for

development on openMP.According to openMP(2011b) it

is consider to support for accelerators such as GPUs,also if

we increase the file size more and more we can get the

more speedup. we can explore more and more

multithreading libraries and explore their features such as

TBB,boost thread, Posix thread .In cilk in future we can

explore on cilkview and cilscreen tools.From open

MPI(2011) it is quite clear that there is a lot of on-going

development on MPI.

Acknowledgement

We would like to express our deep thanks towards the

Deputy Director, SDAPSA and Director, National Remote

Sensing Center for giving us constant encouragement and

support.

References

Chao-Chin Wu, L.-F. L.-T.-H. (2012),Using Hybrid MPI and

Openmp programing to optimize communication in parallel

loop self sheduling sceme for multicore pc clusters. The

Journal of Supercomputing , pp 31-61.

Minjang Kim, P. K. (June 2013), Predicting Potential Speedup of

Serial Code via Lightweight Profiling and Emulations with

Memory Performance Model. ComSIS Vol. 10, No. 3.

Sabahat Saleem1, M. I. (2014),Multi-Core Program

Optimization: Parallel Sorting Algorithms in Intel Cilk Plus.

International Journal of Hybrid Information Technology

Vol.7, No.2 (2014), pp 151-164.

Shen Hua1, 2. Z. (2013), Comparison and Analysis of Parallel

Computing Performance Using OpenMP and MPI. The Open

Automation and Control Systems Journal, pp 5, 38-44.

Sreepathi Pai, R. G. (n.d.), Limits of Data-Level Parallelism.

Yuxiong He, C. E. (2010),The Cilkview Scalability Analyzer.

SPAA’10.

