

1284 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Improving Efficiency of GEO-Distributed Data Sets using Pact

Kirtimalini N. Kakade
Ȧ*

 and T.A.Chavan
Ȧ

ȦDepartment of Information Technology,Smt.KashibaiNawale College of Engineering , University Of Pune,Pune ,Maharashtra,India

Accepted 01 May 2014, Available online 01 June, Vol.4, No.3 (June 2014)

Abstract

In an Internet era, a report says every day 2.5 quintillion bytes of data is created. This data is obtained from many

sources such as sensors to gather climate information, trajectory information, transaction records, web site usage data

etc. This data is known as Big data. Hadoop is only scalable that is it can reliably store and process petabytes. Hadoop

plays an important role in processing and handling big data It includes MapReduce – offline computing engine, HDFS –

Hadoop Distributed file system, HBase – online data access.Map Reduce functions as dividing input files into chunks and

processing these in a series of parallelizable steps., mapping and reducing constitute the essential phases for a Map

Reduce job. As this freamework provides solution for large data nodes by providing distributed environment. Moving all

input data to a single datacenter before processing the data is expensive. Hence we concentrate on geographical

distribution of geo-distributed data for sequential execution of map reduce jobs to optimize the execution time. But it is

observed from various results that mapping and reducing function is not sufficient for all type of data processing. The

fixed execution strategy of map reduce program is not optimal for many task as it does not know about the behavior of

the functions. Thus, to overcome these issues, we are enhancing our proposed work with parallelization contracts. These

contracts help to capture a reasonable amount of semantics for executing any type of task with reduced time

consumption. The parallelization contracts include input and output contract which includes the constraints and

functions of data execution The main aim of this paper is to discuss various known Map reduce technology techniques

available for geodistributed data sets by using different techniques. Further, the paper also discloses the implementation

of these techniques, their advantages, disadvantages, and the results measured. Future trends including use of query

optimizing techniques to improve the results of the query as well as reduce the cost for the computation. To achieve this

we use the indexing mechanism to the cache system to preserve the query search results.

Keywords: Geodistributed , MaReduce, PACT, big data

1. Introduction

1
 Million of users today uses various computer applications

Internet services. The sheer volume of data that these

services work with has led to interest in parallel processing

on commodity clusters. For this the best example is

Google, which uses its MapReduce framework to process

20 petabytes of data per day. These services generate

clickstream data from millions of users every day, which

is a potential gold mine for understanding access patterns

and increasing ad revenue Other Internet services, such as

e-commerce websites and social networks,also cope with

enormous volumes of data.. Furthermore,for each user

action, a web application generates one or two orders of

magnitude more data in system logs, which are the main

resource that developers and operators have for diagnosing

problems in production.

 In ad hoc parallel processing of arbitrary data Map

reduce model is very attractive Map Reduce breaks a

computation into small tasks that run in parallel on

multiple machines, and scales easily to very large clusters

*Corresponding author: Kirtimalini N. Kakade

of inexpensive commodity computers. Mapping and

reducing include is the main task of Map reduce

function.In the initial stage Mappers processes read

respective input file chunks and produce <key,val> pairs

known to be as “intermediate data”.Each key assigned

afterwords to reducer for processing.Hadoop is a free,

Java-based programming framework that supports the

processing of large data sets in a distributed computing

environment. It is part of the Apache project sponsored by

the Apache Software Foundation. Hadoop makes it

possible to run applications on systems with thousands of

nodes involving thousands of terabytes. Its distributed file

system facilitates rapid data transfer rates among nodes

and allows the system to continue operating uninterrupted

in case of a node failure. This approach lowers the risk of

catastrophic system failure, even if a significant number of

nodes become inoperative. Hadoop was inspired by

Google's MapReduce, a software framework in which an

application is broken down into numerous small parts.

Any of these parts (also called fragments or blocks) can be

run on any node in the cluster. Doug Cutting, Hadoop's

creator, named the framework after his child's stuffed toy

elephant. The current Apache Hadoop ecosystem consists

KirtimaliniN. Kakade et al Improving efficiency of geodistributed datasetusing PACT

1285 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

of the Hadoop kernel, MapReduce, the Hadoop distributed

file system (HDFS). The Hadoop framework is used by

major players including Google, Yahoo and IBM, largely

for applications involving search engines and advertising.

The preferred operating systems are Windows and Linux

but Hadoop can also work with BSD and OS X.

2. HadoopMapreduce

To process huge data sets within an acceptable amount of

time, parallel-executable programs are demanded.

However, developing such distributed programs are

nontrivial and time consuming. For example, it is

challenging to organize data and code, and handle failures

for such programs. To simplify these tasks, an abstraction

to organize parallelizable tasks, MapReduce, is developed.

With MapReduce, programmers are only required to

develop two functions: 1) Map() for data processing, and

2) Reduce() for collecting and digesting data. MapReduce

takes care of nodes coordination, data transport, and

failures. Map/Reduce is a “programming model and an

associated implementation for pro- cessing and generating

large data sets”. The Hadoop framework takes the output

from the Mapper and does the following –

1. Partitions the output

2. Sorts the individual partitions

3. Sends relevant partitions to Reducers

4. Merges the partitions received from different Mappers

 5. Groups the tuples in the partition based on key and

calls the reduce function.

3. Related Work And Comparative Analysis

Improving MapReduce Performance in Heterogeneous

Environments MapReduce is emerging as an important

programming model for large-scale data-parallel

applications such as web indexing, data mining, and

scientific simulation. A new scheduling algorithm,

Longest Approximate Time to End (LATE) is designed,

that is highly robust to heterogeneity. we address the

problem of how to robustly perform speculative execution

to maximize performance. Hadoop’s scheduler starts

speculative tasks based on a simple heuristic comparing

each task’s progress to the average progress. Although this

heuristic works well in homogeneous environments where

stragglers are obvious, we show that it can lead to severe

performance degradation when its underlying assumptions

are broken. We design an improved scheduling algorithm

that reduces Hadoop’s response time by a factor of 2. The

goal of speculative execution is to minimize a job’s

response time. Response time is most important for short

jobs where a user wants an answer quickly, such as queries

on log data for debugging, monitoring and business

intelligence. [Chamikara Jayalath et al, 2013]

Volley An Automated Data Placement for Geo-Distributed

[S. Agarwal et al, 2010] Cloud Services As cloud

services grow to span more and more globally distributed

datacenters, there is an increasingly urgent need for

automated mechanisms to place application data across

these datacenters. We present Volley, a system that

addresses these challenges. Cloud services make use of

Volley by submitting logs of datacenter requests. Volley

analyzes the logs using an iterative optimization algorithm

based on data access patterns and client locations, and

outputs migration recommendations back to the cloud

service. To utilize Volley, applications have to log

information on the requests they process. These logs must

enable correlating requests into “call trees” or “runtime

paths” that capture the logical flow of control across

components, as in Pinpoint or X-Trace . Volley takes

approximately 14 hours to run through one month’s worth

of log files. We first map each client to a set of geographic

coordinates using the commercial geo-location database

mentioned earlier. Iteratively Move Data to Reduce

Latency. Volley iteratively moves data items closer to both

clients and to the other data items that they communicate

with. This iterative update step incorporates two earlier

ideas: a weighted spring model as in Vivaldi and spherical

coordinates as in Htrae . After computing a nearly ideal

placement of the data items on the surface of the earth, we

have to modify this placement so that the data items are

located in datacenters, and the set of items in each

datacenter satisfies its capacity constraints. Like Phase 2,

this is done iteratively: initially, every data item is mapped

to its closest datacenter. For datacenters that are over their

capacity, Volley identifies the items that experience the

fewest accesses, and moves all of them to the next closest

datacenter. Because this may still exceed the total capacity

of some datacenter due to new additions, Volley repeats

the process until no datacenter is over capacity.

 HOG: Distributed HadoopMapReduce on the

GridMapReduce is a framework pioneered by Google for

processing large amounts of data in a distributed

environment. Hadoop is the open source implementation

of the MapReduce framework. Due to the simplicity of its

programming model and the run-time tolerance for node

failures. The architecture of HOG is comprised of three

components. The first is the grid submission and execution

component. In this part, the Hadoop worker nodes requests

are sent out to the grid and their execution is managed.

The second major component is the Hadoop distributed

file system (HDFS) that runs across the grid. And the third

component is the MapReduce framework that executes the

MapReduce applications across the grid.

Existing Mapreduce System for Geodistributed System

There have been many efforts to improve the efficiency of

the MapReduce job. Other storage systems like

RAMCloud can efficiently handle large amounts of data

but have to be deployed within a datacenter. Other System

includes a programming model and a framework for

developing massively scalable distributed applications.

Some system introduce approximation algorithms that

order MapReduce jobs to minimize overall job completion

time. we describe the model of geo-distributed systems,

data, and operations as considered in this paper. First

define a partition size to keep our solution bounded. To

move data from stage s to next stage s + 1 a MapReduce

phase is applied to data partitions and the same number of

(output) data partitions are created. introduce our solution

for optimizing the execution of a MapReduce job

KirtimaliniN. Kakade et al Improving efficiency of geodistributed datasetusing PACT

1286 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Table I. Comparison of various techniques

Sr.No. Paper Name Advantages Disadvantages

1 Volly is system for automatically geodistributeing

data based on the needs of an application

Data migration between data

centers will maximaize the

efficiency

Cannot control massive data

2 Walter is key value storage system which hold

geodistributed data.

Support geodistributed data

in cloud environment.

Cannot be deployable in data

centers

3 COPS is storage system which supports

geodistributed data.

Efficiently handle data which

is geographically distributed

Do not support actual

computations over stored data.

4 Drayd which is programming model and

framework for deploying massive scalable

distributed applications.

Provides more fine grained

control over execution of

geodistributed data

It does not support process

mechanism to process geo

distributed data.

5 HOG modifies the Hadoop for deployment in

the Open Science grid

HOG contribute to use

hadoop’s map reduce task

sheduler similar to hog can

process large amount of

cross data center

intermediate data copy

operation

It does not support multiple

cloud collaborating with data

centers.

6 G-MR mechanism and DTG algorithm in the

base paper to maintain and process geodistributed

data in cloud environment

G-MR is a mechanism works

on geographically

distributed data and

efficiently provides the

solution for optimizing

execution of Map reduce job

sequence on a given data set

.G-MR significantly

improves processing time

and cost for deosistributed

data

More efficient way to process

query in efficient way by

using PACT Algorithm for

more complex jobs.

sequence on a given dataset. Executing individual

MapReduce jobs in each datacenter on corresponding

inputs and then aggregating results is defined as MULTI

execution path.

Drawbacks

• The functions map and reduce alone are not sufficient

to express many data processing tasks both naturally and

efficiently.

• Map/reduce ties a program to a single fixed execution

strategy, which is robust but highly suboptimal for many

tasks.

• Map/reduce makes no assumptions about the behavior

of the functions. Hence, it offers only very limited

optimization opportunities.

4. Need for Solution

The PACT programming model is a generalization of

MapReduce, providing additional second-order functions,

and introducing output contracts.It provide the efficiency

for the more in geodistributedenvironment.In recent years

a variety of approaches for web-scale data analysis have

been proposed. All of those efforts base on large sets of

shared-nothing servers and a massively-parallel

jobexecution. However, their programming abstractions

and interfaces differ significantly.TheMapReduce

programming model and execution framework are among

the first approaches for data processing on the scale of

several thousand machines. The idea of separating

concerns about parallelization and fault tolerance from the

sequential user code made the programming model

popular. As a result, MapReduce and its open source

implementation Hadoop [Had] have evolved as a popular

parallelization platform for both industrial and academic

research.

 Phase - I introduces G-MR, a system for efficiently

processing geo-distributed big data. G-MR is a Hadoop

based framework that can efficiently perform a sequence

of MapReduce jobs on a geo-distributed dataset across

multiple datacenters. G-MR acts much like the atmosphere

surrounding the clouds. The problem of executing geo-

distributed MapReduce job sequences as arising in “cloud-

of clouds” scenarios is analyzed for job execution. For

distributing the input data, DTG algorithm is applied to

identify optimized execution path. The datacenter with

optimized execution path is selected for job execution.we

can implement PACT algorithm for improve the MAP

reduce Schema. After implementing this we implement

the Query Supporting System in the MAP REDUCE

environment as followed by from the cloud mechanism. In

this proposed approach we use query optimizing

techniques to improve the results of the query as well as

KirtimaliniN. Kakade et al Improving efficiency of geodistributed datasetusing PACT

1287 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

reduce the cost for the computation. To achieve this we

use the indexing mechanism to the cache system to

preserve the query search results.So for efficiency in the

storage of the processing time in the case of big data we

need to implement a system such as it will improve

processing time and cost .As well known Map Reduce

programming model is helpful for the handling

geodistrtributed data sets, though it is not much efficient to

handle complex jobs like weather forecasting, Population

counting, stock exchange data etc. So for such data we are

proposing a programming model which having the

enhance structure of Map Reduce model.

Conclusion

From this paper it is concluded that PACT programming

model is a generalization of MapReduce, providing

additional second-order functions, and introducing output

contracts. Although often more user functions need to be

implemented, these have much easier functionality.The

PACT programming model encourages a more modular

programming style. Hence, interweaving of functionality

which is common for MapReduce can be avoided. In this

way we can say that over the extension of the Map reduce

,PACT programming model is more efficient for

improving time and cost for the geodistributed data sets.

References

Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian

Hueske,Odej Kao, Volker Markl, Erik Nijkamp, Daniel

Warneke (2010), MapReduce and PACT - Comparing Data

Parallel Programming Model, Technische University at Berlin,

Germany.

ChamikaraJayalath, Julian Stephen, and Patrick Eugster(2013),

From the Cloud to the Atmosphere: Running MapReduce

across Data Centers, IEEE transactions on computers, Vol. 63,

no. 1.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.

Tomkins(2013), Pig Latin: A Not-so-Foreign Language for

Data Processing, Proc. ACM SIGMOD Int’l Conf.

Management of Data. HadoopAcross Data-Centers.

Hadoop: The Definitive Guide, http://oreilly.com/catalog/

9780596521981, 2013.

H. Chang, M. Kodialam, R. Kompella, T. Lakshman, M. Lee,

and S. Mukherjee(2011), Scheduling in MapReduce-like

Systems for Fast Completion Time, Proc. IEEE Infocom.

M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I.

Stoica(2008), Improving MapReduce Performance in

Heterogeneous Environments, Proc. Eighth USENIX Conf.

Operating Systems Design and Implementation (OSDI).

M. Zaharia, A. Konwinski, A.D. Joseph, R.H. Katz, and I.

Stoica(2008), Improving MapReduce Performance in

Heterogeneous Environments, Proc. Eighth USENIX Conf.

Operating Systems Design and Implementation (OSDI).

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly(2007),

Dryad:Distributed Data-Parallel Programs from Sequential

Building Blocks, Proc. ACM Second SIGOPS/EuroSys

European Conf.Computer Systems (Eurosys)

S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H.

Bhogan(2010), Volley: Automated Data Placement for Geo-

Distributed Cloud Services, Proc. Seventh USENIX Conf.

Networked Systems Design and Implementation (NSDI).

T. Condie, N. Conway, P. Alvaro, J.Hellerstein, K. Elmeleegy,

and R. Sears (2010), MapReduce Online, Proc. Seventh

USENIX Conf. Networked Systems Design and Implementation

(NSDI).

T. Condie, N. Conway, P. Alvaro, J.Hellerstein, K. Elmeleegy,

and R. Sears(2010), MapReduce Online, Proc. Seventh

USENIX Conf. Networked Systems Design and Implementation

(NSDI).

V. Ramasubramanian, T. Rodeheffer, D. Terry, M. Walraed-

Sullivan, T. Wobber, C. Marshall, and A. Vahdat(2009),

Cimbiosys: A Platform for Content-Based Partial Replication,

Proc. Sixth USENIXSymp. Networked Systems Design and

Implementation (NSDI).

W. Lloyd, M.J. Freedman, M. Kaminsky, and D.G. Andersen

(2011), Don’t Settle for Eventual: Scalable Causal Consistency

for Wide- Area Storage with COPS, Proc. ACM 23rd Symp.

Operating Systems Principles (SOSP).

