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Abstract 

  

In an Internet era, a report says every day 2.5 quintillion bytes of data is created. This data is obtained from many 

sources such as sensors to gather climate information, trajectory information, transaction records, web site usage data 

etc. This data is known as Big data.  Hadoop is only  scalable that is it can reliably store and process petabytes. Hadoop 

plays an important role in processing and handling big data It includes MapReduce – offline computing engine, HDFS – 

Hadoop Distributed file system, HBase – online data access.Map Reduce functions as dividing input files into chunks and 

processing these in a series of parallelizable steps., mapping and reducing constitute the essential phases for a Map 

Reduce job. As this freamework provides solution for large data nodes by providing distributed environment. Moving all 

input data to a single datacenter before processing the data is expensive. Hence we concentrate on geographical 

distribution of geo-distributed data for sequential execution of map reduce jobs to optimize the execution time.  But it is 

observed from various results that mapping and reducing function is not sufficient for all type of data processing. The 

fixed execution strategy of map reduce program is not optimal for many task as it does not know about the behavior of 

the functions. Thus, to overcome these issues, we are enhancing our proposed work with parallelization contracts. These 

contracts help to capture a reasonable amount of semantics for executing any type of task with reduced time 

consumption. The parallelization contracts include input and output contract which includes the constraints and 

functions of data execution The main aim of this paper is to discuss various known Map reduce technology techniques 

available for geodistributed data sets by using different techniques. Further, the paper also discloses the implementation 

of these techniques, their advantages, disadvantages, and the results measured. Future trends including use of query 

optimizing techniques to improve the results of the query as well as reduce the cost for the computation. To achieve this 

we use the indexing mechanism to the cache system to preserve the query search results. 
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1. Introduction 

 
1
 Million of users today uses various computer applications  

Internet services. The sheer volume of data that these 

services work with has led to interest in parallel processing 

on commodity clusters. For this the best example is 

Google, which uses its MapReduce framework to process 

20 petabytes of data per day. These services generate 

clickstream data from millions of users every day, which 

is a potential gold mine for understanding access patterns 

and increasing ad revenue Other Internet services, such as 

e-commerce websites and social networks,also cope with 

enormous volumes of data.. Furthermore,for each user 

action, a web application generates one or two orders of 

magnitude more data in system logs, which are the main 

resource that developers and operators have for diagnosing 

problems in production. 

  In ad hoc parallel processing of arbitrary data Map 

reduce model is very attractive Map Reduce breaks a 

computation into small tasks that run in parallel on 

multiple machines, and scales easily to very large clusters 
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of inexpensive commodity computers. Mapping and 

reducing include is the main task of Map reduce 

function.In the initial stage Mappers processes read 

respective input file chunks and produce <key,val> pairs 

known to be as “intermediate data”.Each key assigned 

afterwords to reducer for processing.Hadoop is a free, 

Java-based programming framework that supports the 

processing of large data sets in a distributed computing 

environment. It is part of the Apache project sponsored by 

the Apache Software Foundation.  Hadoop makes it 

possible to run applications on systems with thousands of 

nodes involving thousands of terabytes. Its distributed file 

system facilitates rapid data transfer rates among nodes 

and allows the system to continue operating uninterrupted 

in case of a node failure. This approach lowers the risk of 

catastrophic system failure, even if a significant number of 

nodes become inoperative.  Hadoop was inspired by 

Google's MapReduce, a software framework in which an 

application is broken down into numerous small parts. 

Any of these parts (also called fragments or blocks) can be 

run on any node in the cluster. Doug Cutting, Hadoop's 

creator, named the framework after his child's stuffed toy 

elephant. The current Apache Hadoop ecosystem consists 
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of the Hadoop kernel, MapReduce, the Hadoop distributed 

file system (HDFS). The Hadoop framework is used by 

major players including Google, Yahoo and IBM, largely 

for applications involving search engines and advertising. 

The preferred operating systems are Windows and Linux 

but Hadoop can also work with BSD and OS X. 

2. HadoopMapreduce 

To process huge data sets within an acceptable amount of 

time, parallel-executable programs are demanded. 

However, developing such distributed programs are 

nontrivial and time consuming. For example, it is 

challenging to organize data and code, and handle failures 

for such programs. To simplify these tasks, an abstraction 

to organize parallelizable tasks, MapReduce, is developed. 

With MapReduce, programmers are only required to 

develop two functions: 1) Map() for data processing, and 

2) Reduce() for collecting and digesting data. MapReduce 

takes care of nodes coordination, data transport, and 

failures. Map/Reduce is a “programming model and an 

associated implementation for pro- cessing and generating 

large data sets”. The Hadoop framework takes the output 

from the Mapper and does the following –  

1. Partitions the output  

2. Sorts the individual partitions  

3. Sends relevant partitions to Reducers  

4. Merges the partitions received from different Mappers 

 5. Groups the tuples in the partition based on key and 

calls the reduce function.  

3. Related Work And Comparative Analysis 

Improving MapReduce Performance in Heterogeneous 

Environments MapReduce is emerging as an important 

programming model for large-scale data-parallel 

applications such as web indexing, data mining, and 

scientific simulation. A new scheduling algorithm, 

Longest Approximate Time to End (LATE) is designed, 

that is highly robust to heterogeneity. we address the 

problem of how to robustly perform speculative execution 

to maximize performance. Hadoop’s scheduler starts 

speculative tasks based on a simple heuristic comparing 

each task’s progress to the average progress. Although this 

heuristic works well in homogeneous environments where 

stragglers are obvious, we show that it can lead to severe 

performance degradation when its underlying assumptions 

are broken. We design an improved scheduling algorithm 

that reduces Hadoop’s response time by a factor of 2. The 

goal of speculative execution is to minimize a job’s 

response time. Response time is most important for short 

jobs where a user wants an answer quickly, such as queries 

on log data for debugging, monitoring and business 

intelligence. [Chamikara Jayalath et al, 2013] 

Volley An Automated Data Placement for Geo-Distributed 

[S. Agarwal et al, 2010] Cloud Services As cloud 

services grow to span more and more globally distributed 

datacenters, there is an increasingly urgent need for 

automated mechanisms to place application data across 

these datacenters.  We present Volley, a system that 

addresses these challenges. Cloud services make use of 

Volley by submitting logs of datacenter requests. Volley 

analyzes the logs using an iterative optimization algorithm 

based on data access patterns and client locations, and 

outputs migration recommendations back to the cloud 

service. To utilize Volley, applications have to log 

information on the requests they process. These logs must 

enable correlating requests into “call trees” or “runtime 

paths” that capture the logical flow of control across 

components, as in Pinpoint  or X-Trace . Volley takes 

approximately 14 hours to run through one month’s worth 

of log files. We first map each client to a set of geographic 

coordinates using the commercial geo-location database 

mentioned earlier. Iteratively Move Data to Reduce 

Latency. Volley iteratively moves data items closer to both 

clients and to the other data items that they communicate 

with. This iterative update step incorporates two earlier 

ideas: a weighted spring model as in Vivaldi and spherical 

coordinates as in Htrae . After computing a nearly ideal 

placement of the data items on the surface of the earth, we 

have to modify this placement so that the data items are 

located in datacenters, and the set of items in each 

datacenter satisfies its capacity constraints. Like Phase 2, 

this is done iteratively: initially, every data item is mapped 

to its closest datacenter. For datacenters that are over their 

capacity, Volley identifies the items that experience the 

fewest accesses, and moves all of them to the next closest 

datacenter. Because this may still exceed the total capacity 

of some datacenter due to new additions, Volley repeats 

the process until no datacenter is over capacity. 

 HOG: Distributed HadoopMapReduce on the 

GridMapReduce  is a framework pioneered by Google for 

processing large amounts of data in a distributed 

environment. Hadoop is the open source implementation 

of the MapReduce framework. Due to the simplicity of its 

programming model and the run-time tolerance for node 

failures. The architecture of HOG is comprised of three 

components. The first is the grid submission and execution 

component. In this part, the Hadoop worker nodes requests 

are sent out to the grid and their execution is managed. 

The second major component is the Hadoop distributed 

file system (HDFS) that runs across the grid. And the third 

component is the MapReduce framework that executes the 

MapReduce applications across the grid.  

Existing Mapreduce System for Geodistributed System 

 

There have been many efforts to improve the efficiency of 

the MapReduce job. Other storage systems like 

RAMCloud can efficiently handle large amounts of data 

but have to be deployed within a datacenter. Other System 

includes a programming model and a framework for 

developing massively scalable distributed applications. 

Some system introduce approximation algorithms that 

order MapReduce jobs to minimize overall job completion 

time. we describe the model of geo-distributed systems, 

data, and operations as considered in this paper. First 

define a partition size to keep our solution bounded. To 

move data from stage s to next stage s + 1 a MapReduce 

phase is applied to data partitions and the same number of 

(output) data partitions are created. introduce our solution 

for optimizing the execution of a MapReduce job 
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Table I. Comparison of various techniques 

 

Sr.No. Paper Name Advantages  Disadvantages 

1 Volly is system for automatically geodistributeing 

data based on the needs of an application 

 

Data migration between data 

centers will maximaize the 

efficiency 

 

Cannot control massive data 

 

2 Walter  is  key value storage system which hold 

geodistributed data. 

 

Support geodistributed data 

in cloud environment. 

 

Cannot be deployable in data 

centers 

3 COPS is storage system which supports 

geodistributed  data. 

 

Efficiently handle data which 

is geographically distributed 

 

Do not support actual 

computations over stored data. 

 

4 Drayd which is programming model and 

framework for deploying massive scalable  

distributed  applications. 

 

Provides more fine grained 

control over execution of 

geodistributed data 

 

It  does not support process 

mechanism to process geo 

distributed data. 

 

5 HOG  modifies the  Hadoop for  deployment in 

the Open Science grid  

 

HOG contribute to  use 

hadoop’s map reduce task 

sheduler similar to hog can 

process large amount of 

cross data center 

intermediate  data copy 

operation 

It does not support  multiple 

cloud collaborating with data 

centers. 

 

6 G-MR mechanism and DTG  algorithm in the 

base paper  to maintain and process geodistributed 

data in cloud environment 

G-MR is a mechanism works 

on  geographically 

distributed data and 

efficiently provides the  

solution  for optimizing  

execution of Map reduce  job 

sequence on a given data set 

.G-MR significantly 

improves  processing time 

and cost  for deosistributed 

data  

 

More efficient way to process 

query in efficient way  by 

using  PACT Algorithm for 

more complex jobs. 

 

sequence on a given dataset. Executing individual 

MapReduce jobs in each datacenter on corresponding 

inputs and then aggregating results is defined as MULTI 

execution path.  

 

Drawbacks 

 

• The functions map and reduce alone are not sufficient 

to express many data processing tasks both naturally and 

efficiently.  

• Map/reduce ties a program to a single fixed execution 

strategy, which is robust but highly suboptimal for many 

tasks.  

• Map/reduce makes no assumptions about the behavior 

of the functions. Hence, it offers only very limited 

optimization opportunities. 

 

4. Need for Solution 

 

The PACT programming model is a generalization of 

MapReduce, providing additional second-order functions, 

and introducing output contracts.It provide the efficiency 

for the more in geodistributedenvironment.In recent years 

a variety of approaches for web-scale data analysis have 

been proposed. All of those efforts base on large sets of 

shared-nothing servers and a massively-parallel 

jobexecution. However, their programming abstractions 

and interfaces differ significantly.TheMapReduce 

programming model and execution framework are among 

the first approaches for data processing on the scale of 

several thousand machines. The idea of separating 

concerns about parallelization and fault tolerance from the 

sequential user code made the programming model 

popular. As a result, MapReduce and its open source 

implementation Hadoop [Had] have evolved as a popular 

parallelization platform for both industrial  and academic 

research. 

 Phase - I introduces G-MR, a system for efficiently 

processing geo-distributed big data. G-MR is a Hadoop 

based framework that can efficiently perform a sequence 

of MapReduce jobs on a geo-distributed dataset across 

multiple datacenters. G-MR acts much like the atmosphere 

surrounding the clouds. The problem of executing geo-

distributed MapReduce job sequences as arising in “cloud-

of clouds” scenarios is analyzed for job execution. For 

distributing the input data, DTG algorithm is applied to 

identify optimized execution path. The datacenter with 

optimized execution path is selected for job execution.we 

can implement PACT algorithm for improve the MAP 

reduce Schema. After implementing this we implement  

the Query Supporting System in the MAP REDUCE 

environment as followed by from the cloud mechanism. In 

this proposed approach we use query optimizing 

techniques to improve the results of the query as well as 
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reduce the cost for the computation. To achieve this we 

use the indexing mechanism to the cache system to 

preserve the query search results.So for efficiency in the 

storage of the processing time in the case of big data we 

need to implement a system such as it will improve 

processing time and cost .As well known Map Reduce 

programming model is helpful for the handling 

geodistrtributed data sets, though it is not much efficient to 

handle complex jobs like weather forecasting, Population 

counting, stock exchange data etc. So for such data we are 

proposing a programming model which having the 

enhance structure of Map Reduce model.  

 

Conclusion 

 

From this paper it is concluded that  PACT programming 

model is a generalization of MapReduce, providing 

additional second-order functions, and introducing output 

contracts. Although often more user functions need to be 

implemented, these have much easier functionality.The 

PACT programming model encourages a more modular 

programming style.  Hence, interweaving of functionality 

which is common for MapReduce can be avoided.  In this 

way we can say that over the extension of the Map reduce 

,PACT programming model is more efficient for 

improving time and cost for the geodistributed data sets. 
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