

 1200 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

Meenu Roy
Ȧ*

 and N.Kirthika
Ȧ

ȦAnna university (Chennai), Sri Ramakrishna Engineering College, Coimbatore, Tamilnadu.

Accepted 01 May 2014, Available online 01 June 2014, Vol.4, No.3 (June 2014)

Abstract

High performance Arithmetic Coder architecture is proposed in this paper for image compression. This arithmetic coder

architecture is used in Set Partitioning. In Hierarchical Trees for further compression of the Discrete Wavelet Transform

decomposed images. The architecture is based on a simple context model. Simple context model results in regular access

pattern during reading the wavelet transform coefficients which is convenient to the hardware implementation. The

arithmetic coder contains four core’s to process different contexts and there is an out-of-order execution mechanism for

different types of context is proposed that helps to allocate the context symbol to the idle arithmetic coding core with

different order that of input. Several dedicated circuits such as common bit detector are used in the architecture to

further improve the throughput. Common bit detector can unroll the renormalization stage of the arithmetic coding. For

low and high updated values, the carry look-ahead adder and fast multiplier divider are also employed in the

architecture which shortens the critical path. An adaptive clock switch mechanism is used which can stop some invalid

bit planes clock for the power saving purpose according to the input images. Experimental result proves that the

arithmetic coder architecture with four internal cores having similar architecture gives better performance as compared

with single core architecture.

Keywords: Arithmetic Coder(AC), Set Partitioning In Hierarchical Trees(SPIHT), Discrete Wavelet Transform(DWT),

Context model, Common Bit Detector(CBD), Carry Look-ahead Adder, Fast multiplier/ divider, Critical path, Adaptive

clock switch.

1. Introduction

1
 Compression is the art of reducing the number of bits

needed to store or transmit data. Compression involves

encoding information using fewer bits than original

representation. The compression can be either lossy or

lossless. Lossless compression technique reduces bits by

identifying and eliminating statistical redundancy. In

lossless compression no information is lost. Lossy

compression technique reduces bits by identifying

unnecessary information and removing it. Process of

reducing the size of a data file is popularly known as data

compression, but its formal name is source coding.

Compression is very useful because it helps to reduce

resource usage, like data storage space or transmission

capacity. All data compression algorithms consist of at

least a model and a coder. Model estimates the probability

distribution and coder assigns shorter codes to the more

likely symbols. Compression is very useful in most

situations because the compressed data will save time and

the space if it compared to the unencoded information it

represent.

 There are different types of coding techniques

available for compression. Among those here using

*Corresponding author Meenu Roy is a PG student and N.Kirthika is

working as Asst. Prof.

arithmetic coding technique because it will create code

word for the entire data together, instead of creating code

word for each data word.

 Arithmetic coding is a well-known method for lossless

data compression. Arithmetic coding is mostly popular in

image and video compression applications. If we have a

message composed of symbols over some finite alphabet,

we can generate the exact number of bits that corresponds

to a symbol. Arithmetic coding bypasses the idea of

replacing an input symbol with a specific code. And it

replaces a stream of input symbols with a single floating

point output number. Arithmetic coding offers the

opportunity to create a code that exactly represents the

frequency of any character [glossary data compression

ppt]. Arithmetic coding is the most efficient method to

code symbols according to the probability of their

occurrence. In contrast to a binary Huffman code tree the

arithmetic coding offers a clearly better compression rate,

as it produces a single symbol rather than several separate

code words. In arithmetic coding, a message is encoded as

real number in an interval from one to zero. Arithmetic

coder generate a unique identifier or tag for the sequence

of length m to be coded and will assign a unique binary

code to this tag.The main data structure of arithmetic

coding is an interval which representing the string

constructed so far as its initial value is [0, 1]. At each

stage, the current interval [min, max] is subdivided into

Meenu Roy et al Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

1201 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

sub-intervals corresponding to the probability model for

the next character.The interval chosen will be the one

representing the actual next character.The more probable

the character, the larger the interval.The coder output is a

number in the final interval. Here we are going to design

an arithmetic coder which is to be used in Set Partitioning

of Hierarchical Trees (SPIHT) encoder for further

compression of the discrete wavelet based decomposed

images. After the SPIHT transformation some regularities

will exist in the file. These regularities may allow us to

further compress the file. With this in mind we

investigated the addition of arithmetic compression to a

SPIHT encoded image.

 SPIHT algorithm is one of the powerful algorithm for

the compression. Wavelet transform SPIHT algorithm is

used to encode the coefficients of the wavelet. The

SPIHT sorting is done by comparing two elements at a

time which results in yes/no states. According to the

sorting pass coefficients are categorizes into 3 lists: LIS

(List of Insignificant Sets) are the set of coefficients

having magnitude smaller than the threshold .Then LIP

(List of Insignificant Pixels) are the coefficients having

magnitude smaller than the threshold. The last one is LSP

(List of Significant Pixels) which are the pixels those

magnitude is larger than that of threshold. The arithmetic

coding method can obtain optimal performance for its

ability to generate codes with fractional bits and it is

widely used in various image compressions (J. Rissanen,

et al, 1976), (J. Rissanen and G. G. Langdon, 1979).

Especially, the set partitioning in hierarchical trees (A.

Said and W. A. Pearlman, 1996) uses an Arithmetic

coding method to improve its peak signal to noise ratio.

Here we are designing an arithmetic coder for SPIHT to

increase the performance and further result in good

compression of the SPIHT. The main contributions of this

architecture can be summarized as follows:

1) Simple context model which is based on the

neighbor pixels’ significant states is designed for

hardware implementation.

2) Different context symbols formed according to the

context model by SPIHT algorithm are processed

in parallel by the arithmetic coder for the speedup

purpose.

3) An internal memory array is used for the

cumulative probability values in order to reduce

memory size. Carry look-ahead adder (CLA)

circuits are employed for the update of probability

variables.

4) A dedicated adaptive power management module is

used to stop clocks for the invalid bit-plane, which

contains no information about the wavelet

coefficients for power efficient design. The

memory access pattern is also compacted for power

saving purpose.

The remaining part of the paper is organized as follows:

Section II describes the Principle of arithmetic coding,

Section III describes about the entire architecture of

arithmetic coder. In that part contain architecture of

arithmetic coder and its core, then CBD structure. Section

IV contains the tests and results that are performed and

obtained. And the Section V end up with the conclusion of

the work.

2. Principle of Arithmetic Coding

Arithmetic coding (H. Printz and P. Stubley, 1993)

completely bypasses the idea of replacing an input symbol

with a specific code. The arithmetic coder maintains two

numbers, low and high. Initially low=0 and high=1. Low

and High values further depends on the formula:-

range = high – low

low = low + range * low_bound (1)

high = low + range * high_bound

The low_bound and high bound can be determined by the

formula:-

Low_bound = ∑

High_bound = ∑
 (2)

 Here we have to code symbol s, where symbols are

numbered from 1 to n and symbol i has probability Pr[i].

The range between low and high is divided between the

symbols of the alphabet, according to their probabilities.

Procedure for arithmetic coding is given in the Fig. 1. In

Fig. 1, it encodes the message sequence ‘bac’ and finally

got the interval between .27 and .30. So, the final any

value between 0.27 and 0.30, will uniquely encode the

message ‘bac’.

Fig.1 Arithmetic coding to encode message bac

In addition with the symbol probability, here we are taking

an additional probability in normal arithmetic coding and

it is called cumulative probability. Let cum_freq[i] be the

cumulative counts for the symbol i, i.e., cum_freq[i]

equals to ∑ . Then the interval for the symbol i is

[cum_freq[i-1], cum_freq[i]]. If the current probability

interval is [low, high], then the update can be done by the

following formula:-

Range = high-low

High = low + range

 (3)

 Low = low + range

For decreasing coding latency and avoiding registers

underflowing, the normalization procedure is used as

follows:-

1) If high HALF, where HALF , then a 0 bit is

 written into output bitstream.

2) If low HALF, then a 1 bit is written into

 output bitstream.

 Otherwise, output bit is not defined. In this case, a

bit_to_follows counter is increased. Then if condition 1 is

satisfied then a 0 bit and bit_to_follows ones are written

Meenu Roy et al Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

1202 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

into output bitstream. If condition 2 is satisfied then a 1 bit

and bit_to_follows zeros are written into output bitstream.

 After the above conditions, the registers low, high are

scaled to avoid underflowing. Basically, AC will shorten

the length of the coding interval continuously as new

symbols arrive. If the input symbol’s probability is high,

the shrink of the coding interval will be slow. Otherwise,

if there are some rare symbols in the coder, the speed of

shrink will be fast. As a result, the coding interval will be

large at the end of coding for high probability symbols

which consume fewer bits for final codes than those of

low frequency symbols. In practical applications,

conditional probabilities of symbols have better

performance than non-conditional probabilities. Then the

context-based AC is widely used in the various fields. The

context means conditions for current symbol which gives

certain conditions for executing the symbol faster. As far

as the image coding is concerned, the context refers to

neighbor pixels states. After the transform stage in

compression, the coefficients have the property of energy

compaction. As a result different coefficients form

different context windows using a preset model. And the

different contexts will be sent to independent coding parts

for updating the interval and emitting the code bits.

3. Architecture of Arithmetic Coder

The architecture of proposed arithmetic coder is shown in

Fig.2. It consists of four identical cores and each core will

work as an general arithmetic coder (K.Harika and

K.V.Ramana Reddy, 2013) and executes parallel. When

the context label and binary code symbol arrive, context

switch differentiates the input context and sends the

context value to the context dispatcher by different paths.

And the main task of the context dispatcher is to schedule

the order of the input contexts that are sent to the different

cores for calculation. In order for speedup, the context

dispatcher can emit the context values to each core by a

disorder, which means that execution order can be

different from that of input. There is a small buffer for

context value which is set in the context dispatcher to

implement reorganizing the processing order.

Fig.2 Architecture of proposed arithmetic coder

And each of four coding cores has its state register to

indicate whether the coding core can receive new context.

If there is no context in the buffer, the state of core is set to

idle. When a context symbol arrives, the state of core is set

to the context label which is used to block any new

context. Then the dispatcher checks the states to find if

there is an idle core. And dispatcher combines several

contexts and emits them to the corresponding cores. The

context and its binary symbol are emitted to the

corresponding calculation cores, i.e., FC core, FSign core,

FD core, and FL core through the internal bus which is

clearly shown in Fig.2. If the incoming context is blocked,

then it will be delayed in the dispatcher and wait for the

next clock cycle to be emitted.

 At beginning, four cores are ready for processing the

contexts. Then in the first clock cycle, four contexts are

emitted simultaneously. And in the second clock cycle,

two new contexts arrive. As one context pair is not

finished, then the newly coming context pair is blocked by

corresponding core to which it is being sent. Every code

core works independently, which allows multi-contexts

being calculated in parallel. Then the outputs of each core

are connected with another bus. Code stream reorder

buffer is used to sort the order of each code core as the

execution order differs from the input order. And the code

stream multiplex module collects all code bits emitted by

the code cores and finally emitted to external by output

ports.

3.1 Architecture of AC core

The internal structure of each code core is identical and its

working is same as general arithmetic coder. Fig.3 shows

the internal architecture of the AC core. For each core, the

Read Context and Symbol part compares the context label

with its internal register to judge whether the context label

conforms to its own tag. And then the correct label is

transmitted to Boundary Update part. In boundary update

part, the upper and lower bounds are computed by two

different parts, they are, Upper Bound Update and Lower

Bound Update.

Fig.3 Internal architecture of AC core which functioning is

as general AC coder

Meenu Roy et al Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

1203 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

The coding symbol probability register file records the

symbol probability values for the symbol. The cumulative

probabilities cum_freq[i-1] and cum_freq[i] , which are

stored in the cumulative probability register file, are

accompanied with the old bound values high and low to

compute new bounds for the probability interval. Both

outputs of the update parts, i.e., new_high and new_low,

are calculated by these variables based on the formula (3).

These values are calculated by using carry look-ahead

adder and fast multiplier/divider array (K.SivaNagi Reddy,

V.Sidda Reddy and Dr.B.R.Vikram, 2012). For speedup

purpose, a CLA and a fast multiplier array are employed

and it helps to reduce the delay of critical path. New

bound values are then registered and connected to the

common bit detector (CBD) part which unrolls the internal

loop and records the same bits from the MSB to the LSB

between two registers. Finally the same bits are collected

to form align code stream in the Bit Assembly. And these

are supplied directly to the Code Stream Output part for

emitting codes to the external bus. In the code stream

output first the bits are stored in the buffer and then

transferred to the output as code word. The Coding

Control part is responsible for the whole code core’s

running and it sends various commands and control

signals.

3.2 Common Bit Detector Structure

In Arithmetic coder, the code bits are generated by an

internal loop, which is essential to the architecture design.

Fig.4 shows the CBD structure which is used to unroll the

internal loop. Inputs of CBD are low and high values after

calculation of formula (3). The bit_valid_count signals the

output bit count from the MSB to the LSB of bit_value

register. And the bit_value is just a concatenation of

common bits and bits_to_follow which is used for

underflow. Then the low_update and high_update

registers are shifted values for two bounds used for the

next run.

Fig.4 CBD Structure

In CBD, the leading bit check (LBC) detects the common

bits between low and high registers which consists of a 16-

XOR gate and a leading zero detector for 16 bits (LZD16)

circuit used by (V. G. Oklobdzija, et al, 1994). The bit

follow check (BFC) module is an array for checking the

mode of underflow. In case for the speedup purpose, 15

possible cases for the bit follow check are checked, which

means that the pos_sel[3:0] of LBC selects one of the bit

follow values from 15 cases based on the proper common

bit position. Fig.5 shows the internal structure for the

BFC.

Fig.5 Internal Structure of BFC with 15 possible cases

 The BFC denotes the bit follow check of two vectors that

can be implemented by a simple logic gate and an LZD

circuit, which is shown in Fig.6. And the corresponding bit

follow value is then registered in the Bit Follow Register

File, which is used for the output and the shift of two

bounds. Three register files are employed for the output,

low and high registers. Low and High registers are shifted

left according to the values of pos_sel[3:0] and the

bit_to_follow register. The output register emits the proper

common bits and the underflow bits according to these

registers.

(a)

(b)

Fig.6 (a) LBC16 and (b) BFC16 Structures

4. Tests and Results

The design of arithmetic coder is described in VHDL and

testing of individual module has been carried out. Each

part of arithmetic coder has been simulated separately and

tested the outputs. First of all the LBC16 and BFC 16

structures are design as per in Fig.6 and simulated. The

simulation results of LBC16 is shown in Fig.7 and BFC16

is shown in Fig.8.

Fig.7 Simulation result of LBC16

In LBC16, the common bits are being detected and it

shows the position of uncommon bits. Here in Fig.7 the

Meenu Roy et al Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

1204 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

13
th

 position of the low and high value differs and it shown

in the simulation results. In BFC16, it shows the

underflow bits, that means the position where the low bit

is higher than the high bit. In Fig.8 it shows the position

where the low bit position is higher than the high bit

position. Next go for the simulation of 15 possible cases of

BFC and the result is shown in Fig.9.

Fig.8 Simulation result of BFC16

Fig.9 Simulation of internal structure of BFC

In internal structure of Bit Follow Check with 15 possible

cases, the output depends upon the LBC output value.

LBC output is given as the select line to the BFC mux in

the BFC internal structure. And depending on that select

value the output is generated. In Fig.9, the select line

position is 13 so the 13
th

 position value will be forced

towards the output. The 13
th

 position value is 0000 so it is

forced towards the output value of mux and gets 0000 as

output. Next we go for the simulation of core of the

arithmetic coder and it is shown in Fig.10.

Fig.10 Simulation of Arithmetic coder’s core structure

Fig.10 shows the simulation result of arithmetic coder’s

core structure which works as general arithmetic coder.

Here the outputs are produced depending upon the bit out

value. If the valid is positive, then the corresponding bit

out value is sent to the buffer. The buffer stores that and

produces the output in dout (output codeword). The output

in buffer and final output is shown in simulation result as

blue coloured line. Using this core, we are going to design

a arithmetic coder with four similar core of the same

above architecture. And the four cores will work in similar

manner and parallel. Fig.11 shows the simulation result of

arithmetic coder with four cores.

Fig.11 (a) Simulation result of Arithmetic coder

In Fig.11, the outputs from four cores are combined

together and produced as one output in the code stream. It

can be clearly viewed in the figure of simulation. Here the

third and second bit will decide to which core it has been

sent. And the zeroth, first and fourth bit will be sent to the

corresponding core, which is responsible for producing the

output code stream. Fig:12 shows the output produced by

four cores separately.

Fig.12 (b) Simulation result of arithmetic coder

In case of performing the proposed architecture with the

general arithmetic coder architecture, we can find a

tremendous decrease in time to produce an output in

proposed AC. The time taken to produce four outputs for

proposed and general architecture of arithmetic coder is

shown in Table.1.

Table 1 Comparison of proposed and general AC

performance

S.No Architecture Time Taken

1 Proposed AC 220000ps

2 General AC 720000ps

Meenu Roy et al Design of Coder Architecture for Set Partitioning in Hierarchical Trees Encoder

1205 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Conclusions

This paper presents implementation of arithmetic coder in

VHDL. The simulation and implementation is carried out

in VLSI lab of Nest Cyber Campus. The results make the

following conclusions as given below:-

1) For improvement of throughput purpose, we proposed

a high speed architecture of Arithmetic Coder with

four cores.

2) In the proposed architecture, a simple context scheme

is used to reduce memory and performance.

3) We are employed high speed calculation units for

speed up purpose. Especially, a power control module

can reduce the power dissipation efficiently. It is a

high parallelism and calculation device that makes the

speed of context processing fast.

4) From the simulation results, our AC architecture can

meet many high speed compression requirements.

5) And comparing with general coder architecture, the

performance of proposed architecture is improved.

Acknowledgement

The authors would gratefully acknowledges valuable

guidance and support to carry out the work from Nest

cyber campus, a branch of nest technologies. And the

reviewers for their helpful comments and revisions.

References

www.binaryessence.com – Glossary Data compression.

J. Rissanen (1976), Generalized kraft inequality and arithmetic

coding, IBM J. Res. Developm., vol. 20, no. 3, pp. 198–203.

J. Rissanen and G. G. Langdon (1979), Arithmetic coding, IBM

J. Res. Developm., vol. 23, no. 2, pp. 149–162.

A. Said and W. A. Pearlman (1996), A new ,fast and efficient

image codec based on set partitioning in hierarchical trees,

IEEE Trans. Circuits Syst. for Video Technol., vol. 6, no. 3,

pp. 243–249.

H. Printz and P. Stubley (1993), Multialphabet arithmetic coding

at 16 MBytes/sec, in Proc. Data Compression Conf., pp.128–

137.

K.Harika, K.V.Ramana Reddy (2013), Design and

Implementation of Arithmetic Coder Used in SPIHT,

International Journal of Innovative Technology and Exploring

Engineering (IJITEE) ISSN: 2278-3075, Volume-3, Issue-3.

K.SivaNagiReddy, V.Sidda Reddy, Dr.B.R.Vikram (2012),

Efficient Memory and Low Complexity Image Compression

Using DWT with Modified SPIHT Encoder, International

Journal of Scientific & Engineering Research, Vol 3, Issue 8.

V. G. Oklobdzija (1994), An algorithmic and novel design of a

leading zero detector circuit: Comparison with logic

synthesis,IEEE Trans. Very Large Scale Integr. Syst., vol. 2,

no. 1, pp. 124–12.

http://www.binaryessence.com/

