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Abstract 

  

Layerwise elementary theory of beam (ETB) and First order shear deformation theory (FSDT) for laminated composite 

beam are discussed together with their merits and demerits. The advanced beam theory is used for an accurate stress 

analysis of two-layered (90/0) cross-ply laminated composite beam having one of their edges rigidly clamped and other 

is free. Theory includes transverse shear deformation effect with shear correction factor. The elementary theory does not 

account the effect of transverse shear whereas First order shear deformation theory includes this effect. Principle of 

virtual work is used to obtain governing differential equation and boundary conditions in theory. Transverse shear stress 

can be obtained from constitutive relations and equilibrium equations as well, satisfying the stress free conditions at top 

and bottom surface of beam. The results are obtained for two layered (90/0) cross-ply laminated cantilever beam 

subjected to sinusoidal loading and compared with available results in literature. 

 

Keywords: Shear deformation; cross-ply laminated beam; First order shear deformation theory 

 

 

Introduction 

 
1
 A laminate is a collection of lamina stacked to achieve 

desired stiffness and thickness. The lamination scheme 

and material properties of individual lamina provide an 

added flexibility to designers to tailor the stiffness and 

strength of laminate to match the structural stiffness and 

strength requirements.   

 

 
The theoretical concepts and analysis methods presented 

herein can help structural engineers in aerospace, civil and 

mechanical engineering industries to select suitable 

material for the best performance in a particular 

application.  

                                                           

*Corresponding author: Rahul S. Patil 

In classical plate theory, which is well known as 

elementary theory of beam (ETB), it is assumed that line 

which is normal to the neutral surface before deformation 

remain straight and normal to the neutral surface after 

deformation. This assumption results in under-estimation 

of deflection and over-estimation of natural frequencies 

and buckling loads. The theory is suitable for slender 

beams but not for thick or deep beams. since the theory 

neglects transverse shear deformation, it leads to less 

accurate results in the case of isotropic thick beams and 

more so in the case of laminated composite thick beams, 

where shear effects are significant. Timoshenko 

(Timoshenko, 1921) was the first to include the effects of 

rotatory inertia and shear deformation in the beam theory. 

In the early days the classical plate theory was extended 

for the analysis of the composite structures. 

 K.P. Saldatos and P. Watson (K.P. Saldatos and P. 

Watson, 1997) has given the methods of improving the 

stress analysis performance of one and two dimensional 

theories for laminated composites. Y.M.Ghugal and 

S.B.Shinde (Y.M.Ghugal and S.B.Shinde, 2011) provided 

a review of discrete layer shear deformation theory for 

flexure of thick cross-ply laminated composite beams. 

Zenkour (Zenkour, 1999) has developed higher order 

shear deformation beam theory. Analytical solution of 

theory is obtained using the Navier-like approach for 

simply supported boundary conditions. 

 Ghugal and Shimpi (Ghugal and Shimpi, 2001) 

provided a review of shear deformation theories for 

isotropic laminated plates. Reddy and Robbins (Robbins, 

1994) has presented a review on theories and 

computational models for laminated composites. Levy and 

Stein (Levy, 1877; Stein, 1986) developed refined plate 
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theories expressing the displacement field in terms of 

trigonometric functions to represent the thickness effect 

and approximated the shear stress distribution through the 

thickness. Liu and Li (Liu D. and Li, 1996) presented an 

overall comparison of laminate theories based on 

displacement hypothesis emphasizing the importance of 

layer wise theories and also presented a series of quasi- 

layer wise theories. The equivalent single layer (ESL) 

theories are incapable to predict the piecewise distribution 

of inplane displacements. The transverse stresses predicted 

are erroneous and double-valued when obtained using 

constitutive relations. To remove these discrepancies in 

ESL theories, the use of layer wise theories for the 

analysis of thick laminates became necessary. Such 

layerwise theories are developed and used by Reddy 

(Reddy J. N, 1987), Lu and Liu (Lu X. and Liu D, 1992). 

A simple and easy to use layerwise shear deformation 

theory for flexural analysis of cross-ply laminated 

composite beams is developed more recently by Shimpi 

and Ghugal (Shimpi R. P. and Ghugal Y. M, 1999). 

Literature study explains the need of layer wise analysis of 

laminated composite structural components in order to get 

more precise results in terms of transverse shear 

deformation, which is more pronounced in thick beams. In 

this paper, the layerwise first order shear deformation 

theory is presented, wherein linear differential equation is 

obtained in terms of transverse displacement. The theory 

satisfies the constitutive relationship in respect of 

transverse shear stress and shear strain in each layer and 

also interface shear stress continuity is satisfied. 

 

 Theoretical Formulations 

 

The theoretical formulation of a cross-ply laminated beam 

based on certain kinematical and physical assumptions is 

presented. The variationally correct forms of differential 

equations and boundary conditions, based on the assumed 

displacement field are obtained using the principal of 

virtual work. 

The beam under consideration consists of two layers:    

Layer 1 and layer 2. 

Layer1 (90o layers) occupies the region:                

0 ;    -b/2 y b/2;   0 z / 2x L h                   (1)       

Layer 2 (0o layers) occupies the region:                      

0 ;    -b/2 y b/2;   -h/2 z 0x L                    (2) 

Where x, y, z are Cartesian coordinates, L is the length, b 

is the width and h is the total depth of beam. The beam is 

subjected to transverse load of intensity q(x) per unit 

length of the beam. The beam can have any meaningful 

boundary conditions. 

Displacement field 

 

The displacement Field of present theory is of the form as 

given below. 

(1) ( , ) ( ) xu x z z h   
                                               (3) 

(2) ( , ) ( ) xu x z z h   
                                               (4) 

( ) ( )w x w x
                                                                    (5) 

Here u(1) and u(2) are the axial displacement components 

in the x direction, superscript 1 and 2 refer to layer 1 layer 2, 

w(x) is the transverse displacement in the z direction, x  is 

rotation of cross section from neutral axis. 

Strain 

Normal and transverse shear strains for layer 1 and layer 2. 

                                                                                         (6) 

 

                                                                                             (7) 

 

                                                                                         (8) 

 

                                                                                         (9) 

 

 

Stresses 

 

One dimensional constitutive laws are used to obtain the 

normal bending and transverse shear stresses for layer 1 and 

layer 2.  

 

                                                                                       (10) 

 

 

                                                                                       (11)

(1) (1)

ZX

dw
KG

dx
 

 
  

 
                                                (12)  

(2) (2)

ZX

dw
KG

dx
 

 
  

 
                                                (13) 

 

Governing equation and Boundary conditions 

 

Using the expressions for strains and stresses (6)-(13) and 

principal of virtual work, variationally consistent 

differential equations and boundary conditions for the 

beam under consideration are obtained. The principle of 

virtual work when applied to the beam leads to:                                                                  

 

 

                                                                                       (14) 

 

 

 

(1)
(1) ( )x

du d
z h

dx dx


    

(2)
(2) ( )x

du d
z h

dx dx


    

(1)
(1) 0zx

du

dz
        

(2)
(2) 0zx

du

dz
        

(1) (1)(1) (1) ( )x x

d
E E z h

dx


     

(2) (2) (2) (2) ( )x x

d
E E z h

dx


     

 

 

0

(1) (1)

0 /2

/2

(2) (2)

0 0 0

0

x L z

x x

x z h

x L z h x L

x x

x z x

b dx dz

b dx dz q wdx

  

   

 

 

  

  



 

 

  
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Where the symbol ‘ ’ denotes the variational operator. 

Employing Green’s theorem in above Eq. successively and 

collecting the coefficients of the primary variables (i.e. w), 

we obtain the governing equations and the associated 

boundary conditions. The governing equation is as 

follows: 

2

42
0

d dw
D AD

dx dx



 

    
 

                        (15) 

2

4 4 02
sin

d w d x
AD Ad q

dx dx L

 
                            (16) 

Boundary Condition 

 

 

                                                                                       (17) 

 

Or w is prescribed. 

Where D is the constant defined as below. 

(2) 3

1 1( )D A B DE bh                                            (18) 

 

(1) 2 2

(2)

1 1

24 4 2 24 4 2

E
D

E

       
         
    

  (19) 

Layer 1 integration constant is as follows:                                                                                                                                                                                                                                                                                     
2

3 (1)

1

1

24 4 2
A bh E

  
   

 
                         (20) 

Layer 2 integration constant is as follows:            

2
3 (2)

1

1

24 4 2
B bh E

  
   

 
                         (21) 

Thus, the static behavior of beam is given by the solution 

of these variationally consistent governing differential 

equations and simultaneously satisfaction of the associated 

boundary conditions. 

Illustrative Example 

 

Example1: Cantilever beam with sinusoidal load-q0 sin (πx/L)   

 

 

 

 

 

 

 

 

Using governing differential equation ‘φ’ and ‘w’ is 

obtained 

3 2

2 2 2

1 1 1
cos

2

qL x x x

D L L L




  

 
    

   
4 3 3 3 2

4 3 2

2

2

4

sin
6 2

sin

q L x x x x

D L L L L
w

q L x x

AD L L

   



 



  
    

  
  
   
   

 

 

Substituting expressions for w, the final expressions for 

axial displacements can be obtained 
3 2

1 2 2 2

1 1
cos

2

z h qL x x x
u

h D L L L




  

  
        

     
3 2

2 2 2 2

1 1
cos

2

z h qL x x x
u

h D L L L




  

  
        

     
Substituting expressions for w, the final expressions for 

axial stresses can be obtained 
2

(1) (1) 1
sin 1x

Z h qL x x
E

h D L L


 

 

   
        

     
2

(2) (2) 1
sin 1x

Z h qL x x
E

h D L L


 

 

   
       

     
 

Expression for transverse shear stresses derived from the 

constitutive relationships
CR

zx  

(1)
(1) (1) 0ZX

du dw
G

dz dx


 
   

   
(2)

(2) (2) 0ZX

du dw
G

dz dx


 
   

   

Expressions for transverse shear stress,
EQL

zx obtained from 

the equilibrium equations 

2 2 2
(1) (1) cos 1

2 8 2
ZX

z h h qL x
E hz

D L

 
 



   
        

    

2
(2)

(2)

2 2
(1)

cos 1
2

cos 1
8 2

ZX

z qL x
E hz

D L

h h qL x
E

D L







 



    
      

   
                  

Performance Analysis (Numerical Results): 

 

The results for axial displacement, transverse 

displacement, axial and transverse stresses are presented in 

the following non dimensional form for the purpose of 

presenting the results in this work. Furthermore it may be 

noted that zx and zx when obtained by constitutive 

relations indicated by 
CR

zx and 
CR

zx  when they are 

obtained by using equilibrium equations, are indicated by 
EE

zx and 
EE

zx  

 
3

(1) (2)

1 1 3

0

0

l

d w
E A E B w

dx


 
   

 

q0 sin (πx/L)   

L Z 

Y 
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Table 1:  Comparison of non-dimensional axial displacement ( u ) (aspect ratio=S=4) For beams subjected to sinusoidal 

loading, q(x) 

 

 

Table 2: Comparison of non-dimensional axial stress ( x
) (aspect ratio=S=4) 

 

 

Table 3: Comparison of non-dimensional Transverse shear stress (

EE

zx
) (aspect ratio=S=4) 

 

x/L 

 

0.00 0.2 

 

0.4 0.6 0.8 1.0 

    Source 

z/h 

 

z/h         

ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT 

0.5 0.00 0.00 -2.25 -2.25 -3.50 -3.50 -4.03 -4.03 -4.03 -4.03 -4.17 -4.17 

0.4 
0.00 

 

0.00 
-1.41 -1.41 -2.20 -2.20 -2.53 -2.53 -2.53 -2.53 -2.62 -2.62 

0.3 0.00 0.00 -0.58 -0.58 -0.90 -0.90 -1.03 -1.03 -1.10 -1.10 -1.07 -1.07 

0.2 0.00 0.00 0.25 0.25 0.39 0.39 0.45 0.45 0.47 0.47 0.47 0.47 

0.1 0.00 0.00 1.09 1.09 1.70 1.70 1.95 1.95 2.02 2.02 2.02 2.02 

0.0 0.00 0.00 1.93 1.93 3.00 3.00 3.45 3.45 3.56 3.56 3.57 3.57 

0.0 0.00 0.00 1.93 1.93 3.00 3.00 3.45 3.45 3.56 3.56 3.57 3.57 

-0.1 0.00 0.00 2.76 2.76 4.30 4.30 4.95 4.95 5.11 5.11 5.12 5.12 

-0.2 0.00 0.00 3.60 3.60 5.60 5.60 6.44 6.44 6.65 6.65 6.67 6.67 

-0.3 0.00 0.00 4.44 4.44 6.91 6.91 7.94 7.94 8.20 8.20 8.22 8.22 

-0.4 0.00 0.00 5.27 5.27 8.21 8.21 9.44 9.44 9.75 9.75 9.77 9.77 

-0.5 0.00 0.00 6.11 6.11 9.51 9.51 10.94 10.94 11.29 11.29 11.321 11.321 

x/L 

 

0.00 0.2 

 

0.4 0.6 0.8 1.0 

    Source 

z/h 

 

z/h         

ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT 

0.5 -87.69 -87.69 -55.74 -55.74 -26.06 -26.06 -8.52 -8.52 -1.13 -1.13 0.00 0.00 

0.4 -55.13 -55.13 -33.78 -33.78 -16.38 -16.38 -5.36 -5.36 -0.79 -0.79 0.00 0.00 

0.3 -22.56 -22.56 -13.83 -13.83 -6.70 -6.70 -2.19 -2.19 -0.29 -0.29 0.00 0.00 

0.2 9.99 9.99 6.12 6.12 2.97 2.97 0.97 0.97 0.12 0.12 0.00 0.00 

0.1 42.56 42.56 26.08 26.08 12.56 12.56 4.13 4.13 0.54 0.54 0.00 0.00 

0.0 0.75 0.75 46.04 46.04 22.33 22.33 7.30 7.30 0.96 0.96 0.00 0.00 

0.0 0.30 0.30 1.84 1.84 0.89 0.89 0.29 0.29 0.03 0.03 0.00 0.00 

-0.1 4.30 4.30 2.64 2.64 1.28 1.28 0.41 0.41 0.05 0.05 0.00 0.00 

-0.2 5.61 5.61 3.43 3.43 1.66 1.66 0.54 0.54 0.07 0.07 0.00 0.00 

-0.3 6.91 6.91 4.23 4.23 2.05 2.05 0.67 0.67 0.08 0.08 0.00 0.00 

-0.4 8.21 8.21 5.03 5.03 2.44 2.44 0.79 0.79 0.10 0.10 0.00 0.00 

-0.5 9.51 9.51 5.83 5.83 2.82 2.82 0.92 0.92 0.12 0.12 0.00 0.00 

x/L 

 
0.00 0.2 

 
0.4 0.6 0.8 1.0 

   Source 

z/h 

 

z/h         

ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT ETB FSDT 

0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.4 3.56 3.56 3.32 3.32 2.33 2.33 1.23 1.23 0.34 0.34 0.00 0.00 

0.3 5.50 5.50 4.98 4.98 3.60 3.60 1.90 1.90 0.52 0.52 0.00 0.00 

0.2 5.82 5.82 5.26 5.26 3.81 3.81 2.01 2.01 0.55 0.55 0.00 0.00 

0.1 4.50 4.50 4.07 4.07 2.95 2.95 1.55 1.55 0.43 0.43 0.00 0.00 

0.0 1.56 1.56 1.41 1.41 0.10 0.10 0.54 0.54 0.14 0.14 0.00 0.00 

0.0 1.56 1.56 1.41 1.41 0.10 0.10 0.54 0.54 0.14 0.14 0.00 0.00 

-0.1 1.38 1.38 1.25 1.25 0.90 0.90 0.47 0.47 0.13 0.13 0.00 0.00 

-0.2 1.13 1.13 1.02 1.02 0.74 0.74 0.39 0.39 0.10 0.10 0.00 0.00 

-0.3 0.82 0.82 0.74 0.74 0.53 0.53 0.28 0.28 0.07 0.07 0.00 0.00 

-0.4 0.44 0.44 0.40 0.40 0.29 0.29 0.15 0.15 0.04 0.04 0.00 0.00 

-0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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(1) (1) 3

4

100
,

,x zx
x zx

E bu E bh w
u w

qh qL

b b

q q

 
 

 

 
 

A cantilever two- layered ( 90/ 0) composite beam, 

wherein layers 1 and 2 occupy the regions given by 

expressions (1) and (2), respectively, is considered for 

detailed numerical study. The beam is subjected to 

sinusoidal load   
( ) 0 sinx

x
q q

L


    acting in the z 

direction. The material of the beam layers is a carbon-

fiber/epoxy unidirectional composite. The following has 

been   assumed: 

(1) 6 (2) 6

(1) 6 (1) 6

1 10 , 25 10 ,

0.20 10 , 0.20 10 ,

0.015641, 0.23077.

E mpa E mpa

G G

D 

   

   

   

where superscripts (1) and (2) refer to layers 1 and 2 

respectively 

 

Fig. 1: Variation of axial displacement (u ) through the 

thickness of cantilever  beam when subjected to sinusoidal 

load for aspect ratio 4 

 

Fig 2: Variation of axial stress ( x ) through the thickness 

of cantilever beam when subjected to sinusoidal load for 

aspect ratio 4 

 

Fig 3: Variation of transverse shear stress (
EE

zx ) through: 

the thickness of cantilever beam subjected to sinusoidal 

load and obtained using equilibrium equations for aspect 

ratio 4 

Comparison of transverse displacement (w) (aspect 

ratio=S=4) 

 

The results of maximum transverse displacement ( w ) for 

the various aspect ratio are presented here in Fig 4 for a 

cantilever beam subjected to sinusoidal load.  

The results of cantilever beam in Example 1 subjected to 

sinusoidal load, for maximum non-dimensional axial 

displacement ( u ), axial or normal bending stress ( x ) 

and transverse shear stress (
EE

zx ) are presented in Table 1, 

Table 2 and Table 3. 

Discussion of Results 

The results of displacement and stresses in this paper are 

presented in following non- dimensional form for the 

purpose of comparison. The results obtained by FSDT for 

displacement and stresses are compared with the ETB.    

The results of maximum transverse displacement ( w ) for 

various aspect ratios for cantilever beam subjected to 

sinusoidal load are shown in fig 4. It is found that ETB 

underestimates the maximum transverse displacement as 

compared to FSDT in case of thick beams. 

Conclusion 

A discrete layer shear deformation theory is used for the 

static flexural analysis of cross ply laminated (90/0) 

beams. From the analysis, following conclusions are 

drawn. 

1. The results of transverse displacement according to 

FSDT are in good agreement with those of ETB.   

2. Transverse displacement values for FSDT converges 

to the ETB values with increase in aspect ratio. As 

-8 -4 0 4 8 12u

-0.50

-0.25

0.00

0.25

0.50

z/h

LETB (at X=0.00)

LFSDT (at X=0.00)

LETB (at X=0.2)

LFSDT (at X=0.2)

LETB (at X=0.4)

LFSDT (at X=0.4)

LETB (at X=0.6)

LFSDT (at X=0.6)

LETB (at X=0.8)

LFSDT (at X=0.8)

LETB (at X=1.0)

LFSDT (at X=1.0)

-2 0 2 4 6zx
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FSDT accounts the shear deformation effect, the 

values of transverse displacement increases with 

decrease in aspect ratio. 
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Nomenclature 

 

1. b = width of beam 

2. D = Flexural rigidity 

3. D  = Modified flexural rigidity coefficient as defined in 

Appendix 

4. 
(1)E ,

(2)E = Young’s module of layer 1 and layer 2, 

respectively 

5. H = Depth (i.e. thickness) of beam 

6. L = Span of the beam 

7. S = Aspect ratio (i.e. ratio of span to depth of beam) 

8. x, y, z  = Rectangular coordinates 

9. u = Non-dimensional axial displacement 

10. w = Non-dimensional transverse displacement 

11. x  = Non-dimensional axial stress 

12. 
EE

zx = Non-dimensional transverse shear stress obtained from 

the equilibrium equations 

Abbreviations 

 

Superscripts 

 

CR- Constitutive relationships  

EE- Equilibrium equations  

 

Acronyms 

 

ETB- Elementary theory of beam bending 

FSDT- First-Order shear deformation theory 

 

 

 

 

 

 

 


