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Abstract 

  

Software testing entails a number of processes that are focused on finding faults within a stipulated time. Lots of papers 

have been published for object oriented metrics but mostly concentrating on software fault prediction, very few has been 

published for bad smells. Bad code smells are used to recognize complex classes in object-oriented software systems for 

refactoring. This study contributes to all code smell prediction techniques by designing a Logistic regression model and 

using Bayesian inference graphs. This paper shows the results of a study in which Object Oriented metrics effectively 

predict design smell for an open source system. Software metrics assess as predictor of smelly classes. Bayesian 

inference graphs can represent decision for finding the smells present in software system. For Probabilistic reliability 

analysis, Bayesian inference is intended to be used for risk related data. This paper presents the relationship between 

smelly classes and object-oriented metrics. This study demonstrates a statistical technique for estimating the smelly 

classes for any piece of software. We examined the open source Eclipse system, which has a strong industrial usage. Our 

main objective is to design a Bayesian Inference graph to predict bad smell in the code. 

 

Keywords: Bayesian Inference, Smelly classes, Software Reliability, CK Metrics, Logistic Regression, Object Oriented 
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1. Introduction 

 
1
 There are many areas in which Software has become an 

essential part of many real time systems, including 

medical, power plant and air traffic control applications 

(Shatnawi, 2010). It is very difficult to develop such 

software applications because system engineers have to 

deal with a large number of quality requirements, 

dependability and performance. The human dependency 

on software gives rise to the possibilities of crises from its 

failure (Shatnawi, 2010). Therefore, there is an increasing 

need for fault free software systems. In object oriented 

languages, software metrics has been used for many years 

to provide developer with additional piece of information 

about their programs (Singh et. al, 2011).  The 

establishment of software reliability processes to 

recognize software faults before release into the 

environment is crucial. Software fault analysis at later 

stages of system development increase software corrective 

maintenance cost (Dejager et. al, 2013). The number of 

faults in a software system can be very large and Software 

maintenance expenses increase when faults are detected in 

the later stages of the software development life cycle 

(Dejager et. al, 2013). The Software industry is paying 

more attention to detecting errors in software systems, 

which are very common and complex problems. 

Preventing a software system from having errors is a 

difficult task (Bennett et. al, 2000). For reducing the 
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defect rate and increase the effectiveness, it is important to 

identify smelly modules in software (Kapila et. al 2013). 

The main focus of this essay is to find a association 

between smelly modules and software metrics. A software 

engineer should always plan for changes to make software 

more reliable and free from bad code smell.  

 To reduce the risk of smelly classes, the developer 

should choose the best method for design (Kapila et. al , 

2013). This study represents the result of empirically 

investigated the CK metric suite and proposed model can 

establish a relationship between software metrics and code 

smell. Prediction of smelly classes provides a method to 

 maintain software quality engineering (Shatnawi et. al, 

2010). The quality of software is extremely important. For 

improving quality, developers should focus on testing 

those portions of code that have the largest number of 

smelly classes. This study is an attempt to predict bad code 

smell in software by designing a Logistic regression model 

and using Bayesian inference graphs. 

 Software quality is a necessary issue throughout the 

software industry. Early estimating the smelly classes of 

software could assist on improving software quality. 

Prediction of smelly class is a proven technique for 

attaining high software reliability (Kapila et. al, 2013). 

Jiantao Pan stated that “Software reliability is the 

probability of failure-free software operation for a 

specified period of time in a specified environment.” 

Techniques for estimating the testing attempts can help in 

increasing the effectiveness of software testing (Kaur et. 
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al, 2011). Being able to predict the smelly classes of 

software can help in improving the efficiency of the whole 

process. The main problems with many software systems 

are that they have bad code smells. For preventing 

software system from bad code smell, software developers 

must know where errors are likely to occur. Many 

researchers studied and designed many metrics models 

(Rosenberg, 1998). 

 Software metrics can be used to predict which modules 

that are expected to contain code smells. Software fault 

prediction is a topic of main concern for various 

researchers (Kapila et. al, 2013) . A timely identification of 

smelly classes will allow for a more effective allotment of 

testing resources and enhanced software quality (Dejaeger 

et. al 2013). The increasing need for software-based 

systems raise the need to develop high quality and reliable 

software system. Identifying software faults at early stages 

of system deployment can decrease software maintenance 

costs and increase software quality. Software quality 

estimation is not only concerned about reliability, but also 

the other quality characteristics such as usability, 

efficiency, maintainability, functionality, and portability. 

Software maintenance is defined in IEEE Standard 1219 

(Bennett et. al, 2000) as “The modification of a software 

product after delivery to correct faults, to improve 

performance or other attributes, or to adapt the product to a 

modified environment.” 

 In this study Logistic regression and Bayesian 

Inference are used to determine the probabilistic influence 

relationships between software metrics and smelly classes. 

Logistic regression is a statistical technique for predicting 

the probability. Bayesian Inference is used in works 

concerning maintenance decisions and performance 

evaluation (Weber, et. al 2012). Lots of different metrics 

can be used for predicting defects in software. It would be 

more beneficial to deal with fewer more-important metrics, 

rather than deal with more less-important metrics. These 

metrics were extracted by inspecting the source code of 

Eclipse 3.4. 

 

2. Related Literature 

 

It has been proven that the division of faults over a system 

can be represented by a Weibull probability distribution. 

In Weibull analysis, the method to provide logically 

accurate failure analysis is done forecasts with small 

samples. According to Dejaeger et. al (2003)  “To 

construct a prediction model, which discriminates between 

fault-prone code segments and those presumed to be fault-

free, the use of static code features in code segments has 

been constructed”. (Bender 1999) proposed a method for 

quantitative risk assessment in epidemiological studies. 

(Bender 1999) investigated threshold effects between a 

binary responsible variable and a continuous risk factor. 

According to Bender “The corresponding benchmark 

values of the risk factor can be calculated by defining 

acceptable levels for the absolute risk and the risk 

gradient. These values can be calculated by means of 

nonlinear functions of the logistic regression coefficients.” 

Bender’s proposed method is illustrated by applying it on 

medical patient data to find out the value of an Acceptable 

Risk Level (VARL) and the Value of an Acceptable Risk 

Gradient (VARG). These values are used to predict 

probability risk levels. Defect counts work as the indicator 

of the quality of the OO system, allowing for more 

variation in the dependent variables analyzed by 

Subramanyam et. al (2003). They validated the WMC 

(Weighted Methods per Class), CBO (Coupling Between 

Object classes), and DIT (Depth of Inheritance Tree) 

metrics as parameters to predict the error count in a class. 

According subramanyam CK metrics could predict error 

counts. Subramanyam and Krishnan select a huge e-

commerce system developed in C++ and Java. They 

empirically validated the CK suite of OO design metrics 

for both languages, C++ and Java. They measured the 

consequences of size along with the metrics values on the 

number of faults by using regression analysis. They 

represented that WMC and CBO could be validated only 

for C++. Alshayeb and Li( 2003) proposed a study to 

represent the association between object oriented metrics. 

They studied two client–server systems and measured 

changes in three Java Development Kit (JDK) releases. 

According to Alshayeb and Li(2003) “They found that OO 

metrics are effective in predicting design efforts and 

source lines of code added, changed, and deleted in the 

short-cycled agile process and ineffective in predicting the 

same aspects in the long-cycled framework process.”  

They found that the Object Oriented metrics effectively 

predicted design effort. However, the metrics were not 

efficient predictors of some variables in the long-cycled 

framework evolution process (JDK). TiborGyimo et. al 

(2005) illustrated fault-proneness prediction of the source 

code of the open source system. They used two different 

methods for fault-proneness prediction. Regression and 

machine learning methods are used to authenticate these 

metrics. They collected and checked the metrics value 

against the bugs found in the bug database called Bugzilla. 

They found CBO (Coupling Between Object classes) and 

LOC (Line of Code) metrics to be the best in predicting 

the fault-proneness of classes but the DIT metric is 

untrustworthy and NOC cannot be used at all for fault-

proneness prediction. (Catal et. al 2009) proposed a 

method that does not require a human expert during the 

prediction process. According to (Catal et. al 2009) 

“Experiments reveal that unsupervised software fault 

prediction can be automated and reasonable results can be 

produced with techniques based on metrics thresholds and 

clustering.”  

 (Shatnawi, 2000) proposed threshold values with 

enhanced classification accuracy. Shatnawi stated that 

“Threshold values provide a meaningful interpretation for 

metrics and provide a surrogate to identify classes at risk.” 

The classes that exceed a threshold value can be selected 

for more testing. In this study Shatnawi measured the 

efficiency of a statistical methodology to recognize 

threshold values for the OO metrics. This methodology 

can be used to recognize threshold values based on the 

logistic regression model. (Shatnawi et. al, 2010)  tested 

threshold values of software metrics in binary and the 

ordinal category by using ROC (Receiver Operating 

Characteristic) curve analysis. They used the area under 

the curve to choose threshold values for each metric. 
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Various approaches for software defect predictions are 

reviewed by Fenton and Neil (Fenton et. al, 1999). This 

study concluded that traditional statistical techniques, such 

as using regression modelling alone, were insufficient. 

 

3. Experimental Design 

 

This study has two objectives.  

1. The first object is to find probabilistic assumptions 

based on Logistic regression. 

2. The second objective is to predict the probability of 

occurrences or non occurrence of smelly classes. 

 
 

Fig. 1 Model Assessment Framework 
 

The CK (Chidamber  et. al. 1994)   suite of metrics 

database was prepared with help of Analyst4j
 

and 

computed each metric of its jdt core package. (Lincke et. 

al, 2008) compared the results of some selected software 

systems. Analyst4j can be used as a stand-alone Rich 

Client application or as an Eclipse IDE plug-in. Analyst4j 

is based on the Eclipse platform. Its features are find 

metrics, examine quality, and report creation for Java 

programs (Lincke et. al, 2008). Analyst4j measures these 

metrics, which forms the source for analysis (Kapila et. al, 

2013). If there was at least one bad smell present in the 

code in a class, it was marked as smelly class. According 

to Moha (Moha et. al, 2010) “Code and design smells are 

poor solutions to recurring implementation and design 

problems.” In this study, the metric and bad smell database 

was collected by making use of the Analyst4j tool (Lincke 

et. al, 2008). A class is smelly if there is at least one type 

of bad smell. The binary categorization is used to classify 

classes into either error or non error category.   The bad 

smells (kapila et. al, 2013) checked for include: blob 

classes, Spaghetti code, High risk function, complex 

classes, complex and undocumented code, Swiss knife 

classes.  

 

4. Statistical Model 

 

Two different types of methodologies were used to 

perform this experiment. 

  

4.1 Software Tool Used 

 

The Tool which is used to collect database for 

implementing this study is Analyst4j tool, which help us to 

collect all CK metrics values and find the bad smells 

present in software code of Eclipse 3.4. After collecting 

and preparing the database (shown in Fig 1.), evaluation 

was done with Matlab.  
 

4.2  Model Based Upon Logistic Regression  
 

Two different types of models are used to perform this 

experiment. The logistic regression model (Guido et. al, 

2006)  is used to study the relationship between bad smells 

and probability of software failure. It used a binary 

dependent variable, which represents whether classes are 

erroneous or not. Univariate binary logistic regression 

(UBR) (Singh et. al 2011), is useful for analyzing the data 

that includes binary variable. 

The UBR model is as follows  

 

 .x 
eg (x)

 + eg(x)
                     (1) 

 

Where g(x)   α + β * x a logit function and   represents 

probability of a class being faulty. X is an object oriented 

metric. Table 1 represents the common descriptive 

statistics of the investigated metrics. Firstly, univariate 

logistic regression is performed (see Table 1). The 

Coefficient is the predictable regression coefficient 

represented by α and β. Logistic regression technique were 

implemented with a threshold value of 0.5, which means 

that if 0.5 <  , the class is classified as defective. 

 

Table 1 Statistics for Eclipse 3.4 

 
Test 

Metrics 

Mean SD Max Min α β 

CBO 6.83 20.30 213 0 -3.7 0.183 

WMC 36.76 122.95 1387 0 -1.8 0.015 

RFC 38.07 125.58 1506 0 -2.0 0.023 

NOC 0.16 0.949 9 0 -4.1 0.548 

LCOM 0.40 0.451 1.5 0 -3.2 3.207 

DIT 1.26 0.959 4 0 -3.4 -0.23 

 

4.3 Model Based Upon Bayesian  

 

In this study, a Bayesian inference model was designed to 

associate Object-Oriented software metrics to software 
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fault content and fault proneness (Pai et. al 2007).  

Bayesian Inference represents a joint probability 

distribution over a set of variables, which are either 

distinct or continuous. A Bayesian inference model is a 

framework for constructing posterior data by combining 

prior knowledge with evidence. Bayes Theorem (Lee 

2012) provides the basis for Bayesian inference model. 

According to Bayes theorem, the probability of an event is 

affected by evidence. The Bayesian approach offers 

intuitive and meaningful inferences about the data. Bayes 

Theorem is as follows:  

 

 (  | )   
 (  |   ) (  )

 ( )
              (2) 

Where  (  |   ) represents Likelihood,  (  ) represents 

Prior distribution and P(Y) is known as marginal 

likelihood or Prior predictive distribution.  

 

5. Result & Conclusion 

 

This study proposed the design for Bayesian inference
2
 for 

individual metrics, which provide the posterior probability 

for smelly classes. Table 2 represents the Bayesian 

Inference graphs result with high prior and posterior 

values. This table includes all statistical information about 

each Bayesian Inference graph for all CK metrics. This 

table informs the prior and posterior range. Figures 2 to 6 

represented the relation of prior, likelihood and posterior. 

The posterior is basically a combination of data and prior 

knowledge. The shape of the likelihood represents amount 

of information contained in the data. The amount of 

information is small, the shape of likelihood will largely 

dispersed, whereas if the amount of information is large, 

the likelihood function will closely focus around some 

particular value of the parameter. The representation of the 

Likelihood is flat in the Bayesian Inference graph
2
 relative 

to the prior; it has little effect on the level of knowledge. 

In case the Prior and Likelihood has similar shapes the 

Posterior distribution is not greatly influenced by the Prior 

knowledge. In Bayesian Inference graphs, if Posterior and 

Likelihood have higher peak than prior, data is greatly 

influenced by prior data.  The Posterior is a formal 

compromise between the Likelihood and the Prior. As 

shown in graphs, high point has the high posterior density. 

 In Bayesian Inference graphs, X-axis represents the 

probability of smelly classes and Y-axis represents density 

of fault occurrence. In Figure 2, 0 represented fault-free 

classes and as the graph moves towards 1 the probability 

of fault occurrence increases.  

 Figure 2 shows, Bayesian Inference graph for CBO. In 

this graph the high posterior density is designed for 

maximum number of classes with posterior probability 

value 0.39 and high prior density is designed for less 

number of classes with prior probability value 0.40. A 

High Posterior probability shows a large number of classes 

for which probability of failure is low. The graph for prior 

distribution is flat and represents less knowledge. The 

posterior distribution is relatively peaked, representing a 

boost in knowledge on the parameter and its situation is 

intermediate between the prior distribution and the 

likelihood of the data being an average of the two sources. 

The Bayesian Inference graph for CBO represents the 

similar shape for the likelihood and prior distribution. If 

the amount of knowledge obtained from data is small, then 

the posterior distribution will not change greatly from the 

prior distribution
2.
 Prior and likelihood have different 

shapes so the posterior distribution is greatly influenced by 

the prior distribution. 

 
Fig 2. Bayesian Inference for representing Likelihood, 

Prior and Posterior for CBO metric of Eclipse  

 
Fig. 3. Bayesian Inference for representing Likelihood, 

Prior and Posterior for WMC metric of Eclipse  

 
Fig. 4. Bayesian Inference for representing Likelihood, 

Prior and Posterior for RFC metric of Eclipse  

Figure 3, Figure 4 and Figure 6 represent the Bayesian 

Inference graphs for WMC, RFC, and LCOM. The WMC, 

RFC and LCOM metrics have the same graph shape. The 

likelihood is highly peaked relative to the prior 

distribution. The posterior distribution is greatly 

influenced by the prior distribution on the level of 

knowledge. Bayesian Inference graphs for WMC, RFC 

and LCOM get have a posterior distribution that is 

narrower than the prior distribution. All the observations 

predict that future releases of the same software code will 

give us more reliable code and need less testing effort.  
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Fig. 5 Bayesian Inference for representing Likelihood, 

Prior and Posterior for NOC metric of Eclipse 

 

Figure 5 shows Bayesian Inference graph represent for 

NOC. The graph for prior distribution represents its value 

below zero which means less knowledge obtained from 

data. The Posterior and likelihood distribution have similar 

shape. Figure 7 shows Bayesian Inference graph represent 

for DIT.  The prior distribution is highly peaked relative to 

the likelihood and focused on 0. The closer the shape of 

the likelihood functions to the prior distribution, the 

smaller the amount of knowledge the data contains and so 

the posterior distribution will not change greatly from the 

prior. In conclusion, we presented a Bayesian Inference 

graphs that can be very informative to predict smelly 

classes. The approach is appropriate for applying data 

from ongoing projects  

 
Fig. 6 Bayesian Inference for representing Likelihood, 

Prior and Posterior for LCOM metric of Eclipse 

 

Table 2 Bayesian Inference graph result with Prior and 

Posterior values 

 
Metric High 

Posterio

r value  

Posterior 

Range 

 High 

Prior 

value 

Prior range 

CBO 0.39 0.33-0.45 0.40 less than 0 to 1 

WMC 0.31 0.20-0.42 0.32 less than 0 to 1 

RFC 0.32 0.20-0.45 0.37 0 to 0.8 

NOC 0.47 0.10 -0.90 0.34 less than 0 to 1 

LCOM 0.37 0.31-0.42 0.41 less than 0 to 0.8  

DIT 0.02 0.01-0.02 0.02 0 to 0.05 

 

 
Fig. 7 Bayesian Inference for representing Likelihood, 

Prior and Posterior for DIT metric of Eclipse 
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