

1724 | International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Bayesian Inference to Predict Smelly classes Probability in Open source software

Heena Kapila
Ȧ*

 and Satwinder Singh
Ḃ

ȦDepartment of Information Technology, Chandigarh Engineering College, Landran-140307, India
ḂDepartment of Computer Science & InfoTech ,B.B.S.B.E.C, Fatehgarh Sahib-140407, India

Accepted 15 May 2014, Available online 01 June2014, Vol.4, No.3 (June 2014)

Abstract

Software testing entails a number of processes that are focused on finding faults within a stipulated time. Lots of papers

have been published for object oriented metrics but mostly concentrating on software fault prediction, very few has been

published for bad smells. Bad code smells are used to recognize complex classes in object-oriented software systems for

refactoring. This study contributes to all code smell prediction techniques by designing a Logistic regression model and

using Bayesian inference graphs. This paper shows the results of a study in which Object Oriented metrics effectively

predict design smell for an open source system. Software metrics assess as predictor of smelly classes. Bayesian

inference graphs can represent decision for finding the smells present in software system. For Probabilistic reliability

analysis, Bayesian inference is intended to be used for risk related data. This paper presents the relationship between

smelly classes and object-oriented metrics. This study demonstrates a statistical technique for estimating the smelly

classes for any piece of software. We examined the open source Eclipse system, which has a strong industrial usage. Our

main objective is to design a Bayesian Inference graph to predict bad smell in the code.

Keywords: Bayesian Inference, Smelly classes, Software Reliability, CK Metrics, Logistic Regression, Object Oriented

Metrics

1. Introduction

1
 There are many areas in which Software has become an

essential part of many real time systems, including

medical, power plant and air traffic control applications

(Shatnawi, 2010). It is very difficult to develop such

software applications because system engineers have to

deal with a large number of quality requirements,

dependability and performance. The human dependency

on software gives rise to the possibilities of crises from its

failure (Shatnawi, 2010). Therefore, there is an increasing

need for fault free software systems. In object oriented

languages, software metrics has been used for many years

to provide developer with additional piece of information

about their programs (Singh et. al, 2011). The

establishment of software reliability processes to

recognize software faults before release into the

environment is crucial. Software fault analysis at later

stages of system development increase software corrective

maintenance cost (Dejager et. al, 2013). The number of

faults in a software system can be very large and Software

maintenance expenses increase when faults are detected in

the later stages of the software development life cycle

(Dejager et. al, 2013). The Software industry is paying

more attention to detecting errors in software systems,

which are very common and complex problems.

Preventing a software system from having errors is a

difficult task (Bennett et. al, 2000). For reducing the

*Corresponding author: Heena Kapila

defect rate and increase the effectiveness, it is important to

identify smelly modules in software (Kapila et. al 2013).

The main focus of this essay is to find a association

between smelly modules and software metrics. A software

engineer should always plan for changes to make software

more reliable and free from bad code smell.

 To reduce the risk of smelly classes, the developer

should choose the best method for design (Kapila et. al ,

2013). This study represents the result of empirically

investigated the CK metric suite and proposed model can

establish a relationship between software metrics and code

smell. Prediction of smelly classes provides a method to

 maintain software quality engineering (Shatnawi et. al,

2010). The quality of software is extremely important. For

improving quality, developers should focus on testing

those portions of code that have the largest number of

smelly classes. This study is an attempt to predict bad code

smell in software by designing a Logistic regression model

and using Bayesian inference graphs.

 Software quality is a necessary issue throughout the

software industry. Early estimating the smelly classes of

software could assist on improving software quality.

Prediction of smelly class is a proven technique for

attaining high software reliability (Kapila et. al, 2013).

Jiantao Pan stated that “Software reliability is the

probability of failure-free software operation for a

specified period of time in a specified environment.”

Techniques for estimating the testing attempts can help in

increasing the effectiveness of software testing (Kaur et.

mailto:%20jpan@cmu.edu

Heena et. al Bayesian Inference to Predict Smelly classes Probability in Open source software

1725 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

al, 2011). Being able to predict the smelly classes of

software can help in improving the efficiency of the whole

process. The main problems with many software systems

are that they have bad code smells. For preventing

software system from bad code smell, software developers

must know where errors are likely to occur. Many

researchers studied and designed many metrics models

(Rosenberg, 1998).

 Software metrics can be used to predict which modules

that are expected to contain code smells. Software fault

prediction is a topic of main concern for various

researchers (Kapila et. al, 2013) . A timely identification of

smelly classes will allow for a more effective allotment of

testing resources and enhanced software quality (Dejaeger

et. al 2013). The increasing need for software-based

systems raise the need to develop high quality and reliable

software system. Identifying software faults at early stages

of system deployment can decrease software maintenance

costs and increase software quality. Software quality

estimation is not only concerned about reliability, but also

the other quality characteristics such as usability,

efficiency, maintainability, functionality, and portability.

Software maintenance is defined in IEEE Standard 1219

(Bennett et. al, 2000) as “The modification of a software

product after delivery to correct faults, to improve

performance or other attributes, or to adapt the product to a

modified environment.”

 In this study Logistic regression and Bayesian

Inference are used to determine the probabilistic influence

relationships between software metrics and smelly classes.

Logistic regression is a statistical technique for predicting

the probability. Bayesian Inference is used in works

concerning maintenance decisions and performance

evaluation (Weber, et. al 2012). Lots of different metrics

can be used for predicting defects in software. It would be

more beneficial to deal with fewer more-important metrics,

rather than deal with more less-important metrics. These

metrics were extracted by inspecting the source code of

Eclipse 3.4.

2. Related Literature

It has been proven that the division of faults over a system

can be represented by a Weibull probability distribution.

In Weibull analysis, the method to provide logically

accurate failure analysis is done forecasts with small

samples. According to Dejaeger et. al (2003) “To

construct a prediction model, which discriminates between

fault-prone code segments and those presumed to be fault-

free, the use of static code features in code segments has

been constructed”. (Bender 1999) proposed a method for

quantitative risk assessment in epidemiological studies.

(Bender 1999) investigated threshold effects between a

binary responsible variable and a continuous risk factor.

According to Bender “The corresponding benchmark

values of the risk factor can be calculated by defining

acceptable levels for the absolute risk and the risk

gradient. These values can be calculated by means of

nonlinear functions of the logistic regression coefficients.”

Bender’s proposed method is illustrated by applying it on

medical patient data to find out the value of an Acceptable

Risk Level (VARL) and the Value of an Acceptable Risk

Gradient (VARG). These values are used to predict

probability risk levels. Defect counts work as the indicator

of the quality of the OO system, allowing for more

variation in the dependent variables analyzed by

Subramanyam et. al (2003). They validated the WMC

(Weighted Methods per Class), CBO (Coupling Between

Object classes), and DIT (Depth of Inheritance Tree)

metrics as parameters to predict the error count in a class.

According subramanyam CK metrics could predict error

counts. Subramanyam and Krishnan select a huge e-

commerce system developed in C++ and Java. They

empirically validated the CK suite of OO design metrics

for both languages, C++ and Java. They measured the

consequences of size along with the metrics values on the

number of faults by using regression analysis. They

represented that WMC and CBO could be validated only

for C++. Alshayeb and Li(2003) proposed a study to

represent the association between object oriented metrics.

They studied two client–server systems and measured

changes in three Java Development Kit (JDK) releases.

According to Alshayeb and Li(2003) “They found that OO

metrics are effective in predicting design efforts and

source lines of code added, changed, and deleted in the

short-cycled agile process and ineffective in predicting the

same aspects in the long-cycled framework process.”

They found that the Object Oriented metrics effectively

predicted design effort. However, the metrics were not

efficient predictors of some variables in the long-cycled

framework evolution process (JDK). TiborGyimo et. al

(2005) illustrated fault-proneness prediction of the source

code of the open source system. They used two different

methods for fault-proneness prediction. Regression and

machine learning methods are used to authenticate these

metrics. They collected and checked the metrics value

against the bugs found in the bug database called Bugzilla.

They found CBO (Coupling Between Object classes) and

LOC (Line of Code) metrics to be the best in predicting

the fault-proneness of classes but the DIT metric is

untrustworthy and NOC cannot be used at all for fault-

proneness prediction. (Catal et. al 2009) proposed a

method that does not require a human expert during the

prediction process. According to (Catal et. al 2009)

“Experiments reveal that unsupervised software fault

prediction can be automated and reasonable results can be

produced with techniques based on metrics thresholds and

clustering.”

 (Shatnawi, 2000) proposed threshold values with

enhanced classification accuracy. Shatnawi stated that

“Threshold values provide a meaningful interpretation for

metrics and provide a surrogate to identify classes at risk.”

The classes that exceed a threshold value can be selected

for more testing. In this study Shatnawi measured the

efficiency of a statistical methodology to recognize

threshold values for the OO metrics. This methodology

can be used to recognize threshold values based on the

logistic regression model. (Shatnawi et. al, 2010) tested

threshold values of software metrics in binary and the

ordinal category by using ROC (Receiver Operating

Characteristic) curve analysis. They used the area under

the curve to choose threshold values for each metric.

Heena et. al Bayesian Inference to Predict Smelly classes Probability in Open source software

1726 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Various approaches for software defect predictions are

reviewed by Fenton and Neil (Fenton et. al, 1999). This

study concluded that traditional statistical techniques, such

as using regression modelling alone, were insufficient.

3. Experimental Design

This study has two objectives.

1. The first object is to find probabilistic assumptions

based on Logistic regression.

2. The second objective is to predict the probability of

occurrences or non occurrence of smelly classes.

Fig. 1 Model Assessment Framework

The CK (Chidamber et. al. 1994) suite of metrics

database was prepared with help of Analyst4j

and

computed each metric of its jdt core package. (Lincke et.

al, 2008) compared the results of some selected software

systems. Analyst4j can be used as a stand-alone Rich

Client application or as an Eclipse IDE plug-in. Analyst4j

is based on the Eclipse platform. Its features are find

metrics, examine quality, and report creation for Java

programs (Lincke et. al, 2008). Analyst4j measures these

metrics, which forms the source for analysis (Kapila et. al,

2013). If there was at least one bad smell present in the

code in a class, it was marked as smelly class. According

to Moha (Moha et. al, 2010) “Code and design smells are

poor solutions to recurring implementation and design

problems.” In this study, the metric and bad smell database

was collected by making use of the Analyst4j tool (Lincke

et. al, 2008). A class is smelly if there is at least one type

of bad smell. The binary categorization is used to classify

classes into either error or non error category. The bad

smells (kapila et. al, 2013) checked for include: blob

classes, Spaghetti code, High risk function, complex

classes, complex and undocumented code, Swiss knife

classes.

4. Statistical Model

Two different types of methodologies were used to

perform this experiment.

4.1 Software Tool Used

The Tool which is used to collect database for

implementing this study is Analyst4j tool, which help us to

collect all CK metrics values and find the bad smells

present in software code of Eclipse 3.4. After collecting

and preparing the database (shown in Fig 1.), evaluation

was done with Matlab.

4.2 Model Based Upon Logistic Regression

Two different types of models are used to perform this

experiment. The logistic regression model (Guido et. al,

2006) is used to study the relationship between bad smells

and probability of software failure. It used a binary

dependent variable, which represents whether classes are

erroneous or not. Univariate binary logistic regression

(UBR) (Singh et. al 2011), is useful for analyzing the data

that includes binary variable.

The UBR model is as follows

 .x
eg (x)

 + eg(x)
 (1)

Where g(x) α + β * x a logit function and represents

probability of a class being faulty. X is an object oriented

metric. Table 1 represents the common descriptive

statistics of the investigated metrics. Firstly, univariate

logistic regression is performed (see Table 1). The

Coefficient is the predictable regression coefficient

represented by α and β. Logistic regression technique were

implemented with a threshold value of 0.5, which means

that if 0.5 < , the class is classified as defective.

Table 1 Statistics for Eclipse 3.4

Test

Metrics

Mean SD Max Min α β

CBO 6.83 20.30 213 0 -3.7 0.183

WMC 36.76 122.95 1387 0 -1.8 0.015

RFC 38.07 125.58 1506 0 -2.0 0.023

NOC 0.16 0.949 9 0 -4.1 0.548

LCOM 0.40 0.451 1.5 0 -3.2 3.207

DIT 1.26 0.959 4 0 -3.4 -0.23

4.3 Model Based Upon Bayesian

In this study, a Bayesian inference model was designed to

associate Object-Oriented software metrics to software

Heena et. al Bayesian Inference to Predict Smelly classes Probability in Open source software

1727 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

fault content and fault proneness (Pai et. al 2007).

Bayesian Inference represents a joint probability

distribution over a set of variables, which are either

distinct or continuous. A Bayesian inference model is a

framework for constructing posterior data by combining

prior knowledge with evidence. Bayes Theorem (Lee

2012) provides the basis for Bayesian inference model.

According to Bayes theorem, the probability of an event is

affected by evidence. The Bayesian approach offers

intuitive and meaningful inferences about the data. Bayes

Theorem is as follows:

 (|)
 (|) ()

 ()
 (2)

Where (|) represents Likelihood, () represents

Prior distribution and P(Y) is known as marginal

likelihood or Prior predictive distribution.

5. Result & Conclusion

This study proposed the design for Bayesian inference
2
 for

individual metrics, which provide the posterior probability

for smelly classes. Table 2 represents the Bayesian

Inference graphs result with high prior and posterior

values. This table includes all statistical information about

each Bayesian Inference graph for all CK metrics. This

table informs the prior and posterior range. Figures 2 to 6

represented the relation of prior, likelihood and posterior.

The posterior is basically a combination of data and prior

knowledge. The shape of the likelihood represents amount

of information contained in the data. The amount of

information is small, the shape of likelihood will largely

dispersed, whereas if the amount of information is large,

the likelihood function will closely focus around some

particular value of the parameter. The representation of the

Likelihood is flat in the Bayesian Inference graph
2
 relative

to the prior; it has little effect on the level of knowledge.

In case the Prior and Likelihood has similar shapes the

Posterior distribution is not greatly influenced by the Prior

knowledge. In Bayesian Inference graphs, if Posterior and

Likelihood have higher peak than prior, data is greatly

influenced by prior data. The Posterior is a formal

compromise between the Likelihood and the Prior. As

shown in graphs, high point has the high posterior density.

 In Bayesian Inference graphs, X-axis represents the

probability of smelly classes and Y-axis represents density

of fault occurrence. In Figure 2, 0 represented fault-free

classes and as the graph moves towards 1 the probability

of fault occurrence increases.

 Figure 2 shows, Bayesian Inference graph for CBO. In

this graph the high posterior density is designed for

maximum number of classes with posterior probability

value 0.39 and high prior density is designed for less

number of classes with prior probability value 0.40. A

High Posterior probability shows a large number of classes

for which probability of failure is low. The graph for prior

distribution is flat and represents less knowledge. The

posterior distribution is relatively peaked, representing a

boost in knowledge on the parameter and its situation is

intermediate between the prior distribution and the

likelihood of the data being an average of the two sources.

The Bayesian Inference graph for CBO represents the

similar shape for the likelihood and prior distribution. If

the amount of knowledge obtained from data is small, then

the posterior distribution will not change greatly from the

prior distribution
2.
 Prior and likelihood have different

shapes so the posterior distribution is greatly influenced by

the prior distribution.

Fig 2. Bayesian Inference for representing Likelihood,

Prior and Posterior for CBO metric of Eclipse

Fig. 3. Bayesian Inference for representing Likelihood,

Prior and Posterior for WMC metric of Eclipse

Fig. 4. Bayesian Inference for representing Likelihood,

Prior and Posterior for RFC metric of Eclipse

Figure 3, Figure 4 and Figure 6 represent the Bayesian

Inference graphs for WMC, RFC, and LCOM. The WMC,

RFC and LCOM metrics have the same graph shape. The

likelihood is highly peaked relative to the prior

distribution. The posterior distribution is greatly

influenced by the prior distribution on the level of

knowledge. Bayesian Inference graphs for WMC, RFC

and LCOM get have a posterior distribution that is

narrower than the prior distribution. All the observations

predict that future releases of the same software code will

give us more reliable code and need less testing effort.

Heena et. al Bayesian Inference to Predict Smelly classes Probability in Open source software

1728 |International Journal of Current Engineering and Technology, Vol.4, No.3 (June 2014)

Fig. 5 Bayesian Inference for representing Likelihood,

Prior and Posterior for NOC metric of Eclipse

Figure 5 shows Bayesian Inference graph represent for

NOC. The graph for prior distribution represents its value

below zero which means less knowledge obtained from

data. The Posterior and likelihood distribution have similar

shape. Figure 7 shows Bayesian Inference graph represent

for DIT. The prior distribution is highly peaked relative to

the likelihood and focused on 0. The closer the shape of

the likelihood functions to the prior distribution, the

smaller the amount of knowledge the data contains and so

the posterior distribution will not change greatly from the

prior. In conclusion, we presented a Bayesian Inference

graphs that can be very informative to predict smelly

classes. The approach is appropriate for applying data

from ongoing projects

Fig. 6 Bayesian Inference for representing Likelihood,

Prior and Posterior for LCOM metric of Eclipse

Table 2 Bayesian Inference graph result with Prior and

Posterior values

Metric High

Posterio

r value

Posterior

Range

 High

Prior

value

Prior range

CBO 0.39 0.33-0.45 0.40 less than 0 to 1

WMC 0.31 0.20-0.42 0.32 less than 0 to 1

RFC 0.32 0.20-0.45 0.37 0 to 0.8

NOC 0.47 0.10 -0.90 0.34 less than 0 to 1

LCOM 0.37 0.31-0.42 0.41 less than 0 to 0.8

DIT 0.02 0.01-0.02 0.02 0 to 0.05

Fig. 7 Bayesian Inference for representing Likelihood,

Prior and Posterior for DIT metric of Eclipse

References

Alshayeb, M., & Li, W. (2003). An empirical validation of object-

oriented metrics in two different iterative software processes. Software
Engineering, IEEE Transactions on, 29(11), 1043-1049.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996). A validation of

object-oriented design metrics as quality indicators. Software
Engineering, IEEE Transactions on, 2(10), 751-761.

Bender, R. (1999). Quantitative risk assessment in epidemiological

studies investigating threshold effects. Biometrical Journal, 41(3),
305-319.

Bennett, K. H., & Rajlich, V. T. (2000, May). Software maintenance and

evolution: a roadmap. In Proceedings of the Conference on the Future
of Software Engineering (pp. 73-87). ACM.

Catal, C., Sevim, U., & Diri, B. (2009). Software fault prediction of

unlabeled program modules. In Proceedings of the World Congress on
Engineering (Vol. 1, pp. 1-3).

Catal, C., & Diri, B. (2009). A systematic review of software fault

prediction studies. Expert systems with applications, 36(4), 7346-
7354.

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object

oriented design. Software Engineering, IEEE Transactions on, 20(6),
476-493.

Chidamber, S. R., Darcy, D. P., & Kemerer, C. F. (1998). Managerial use
of metrics for object-oriented software: An exploratory analysis.

Software Engineering, IEEE Transactions on, 24(8), 629-639

Dejaeger, K., Verbraken, T., & Baesens, B. (2013). Toward
Comprehensible Software Fault Prediction Models Using Bayesian

Network Classifiers. Software Engineering, IEEE Transactions on,

39(2), 237-257
Fenton, N. E., & Neil, M. (1999). A critique of software defect prediction

models. Software Engineering, IEEE Transactions on, 25(5), 675-689.

Guido, J. J., Winters, P. C., & Rains, A. B. (2006). Logistic Regression
Basics. MSc University of Rochester Medical Center, Rochester, NY

Gyimothy, T., Ferenc, R., & Siket, I. (2005). Empirical validation of

object-oriented metrics on open source software for fault prediction.
Software Engineering, IEEE Transactions on, 31(10), 897-910.

Kapila, H., & Singh, S. (2013). Analysis of CK Metrics to predict

Software Fault-Proneness using Bayesian Inference. International
Journal of Computer Applications, 74.

Kaur, S., & Kumar, D. (2011) Quality Prediction of Object Oriented

Software Using Density Based Clustering Approach.
Lee, P. M. (2012). Bayesian statistics: an introduction. John Wiley &

Sons

Lincke, R., Lundberg, J., & Löwe, W. (2008, July). Comparing software
metrics tools. In Proceedings of the 2008 international symposium on

Software testing and analysis (pp. 131-142). ACM.

Pai, G. J., & Bechta Dugan, J. (2007). Empirical analysis of software
fault content and fault proneness using Bayesian methods. Software

Engineering, IEEE Transactions on, 33(10), 675-686.

Pandey, A. K., & Goyal, N. K. (2009). A fuzzy model for early software
fault prediction using process maturity and software metrics.

International Journal of Electronics Engineering, 1(2), 239-245.

Rosenberg, L. H. (1998). Applying and interpreting object oriented
metrics.

Shatnawi, R. (2010). A quantitative investigation of the acceptable risk

levels of object-oriented metrics in open-source systems. Software
Engineering, IEEE Transactions on, 36(2), 216-225.

Shatnawi, R., Li, W., Swain, J., & Newman, T. (2010). Finding software

metrics threshold values using ROC curves. Journal of software
maintenance and evolution: Research and practice, 22(1), 1-16.

Singh, S., & Kahlon, K. S. (2011). Effectiveness of encapsulation and

object-oriented metrics to refactor code and identify error prone
classes using bad smells. ACM SIGSOFT Software Engineering Notes,

36(5), 1-10.

Subramanyam, R., & Krishnan, M. S. (2003). Empirical analysis of ck
metrics for object-oriented design complexity: Implications for

software defects. Software Engineering, IEEE Transactions on, 29(4),

297-310.
Weber, P., Medina-Oliva, G., Simon, C., & Iung, B. (2012). Overview on

Bayesian networks applications for dependability, risk analysis and

maintenance areas. Engineering Applications of Artificial Intelligence,
25(4), 671-682.

 Moha, N., Gueheneuc, Y. G., Duchien, L., & Le Meur, A. (2010).

DECOR: A method for the specification and detection of code and
design smells. Software Engineering, IEEE Transactions,36(1), 20-36

