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Abstract 

  

In this work, an attempt is made to use the B-spline basis functions as the shape functions in the finite element method. 

The linear B-Spline basis functions using two control points and an open uniform knot vector at a time are identical with 

the FEM shape functions. Hence, the open uniform linear basis functions can be used as a shape functions in the FEM. 

These basis functions are employed in the Galerkin’s approximation For the spatial discretization. Several test cases are 

considered to study the effectiveness of the present method. The results obtained by the present method are compared and 

found to be in good agreement with the analytical solution and the finite element method. 
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1. Introduction 

1
 In the recent years, a new class of approximating methods 

which are variants of the finite element methods are 

proposed to solve various initial and boundary value 

problems. The methods that can be included in this 

category are Meshfree methods (Liu.G.R, 2009); B-Spline 

based Finite element method and Isogeometric methods 

(Hughes, et al, 2005, 2006). In these methods, the 

approximating function provides higher order of 

continuity and is capable of providing accurate solutions 

with continuous gradients throughout the domain. 

 In the present work, an attempt is made to use an 

approximating function for the field variable based on the 

B-Spline basis function to solve the various boundary 

value problems. A B-spline basis function is a piecewise 

polynomial function defined in terms of a parameter, the 

degree of which is independent of the number of control 

points. The parameter variable and the control points are 

related by the knot vector.  An open uniform knot vector is 

used to obtain the first degree B-Spline basis function. For 

the spatial discretization, the Galerkin’s approximation 

method (Reddy, 2005) is employed. Numerical studies are 

performed with problems of linear elasticity and Heat 

Conduction in one dimension. The problems considered 

are the extension of a prismatic bar due to body load, 1D 

Laplace eigenvalue problem and temperature distribution 

in a rectangular fin. 

 

2. B–Spline Finite Element Method 

 

The B-splines are a standard tool for describing and  
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modelling curves and surfaces in computer aided design 

and computer graphics. The aim of this section is to 

present a short description of B-splines and its associated 

terminology. 

2.1 B-Spline Basis Function 

The cox-de Boor recursion formula for the B-Spline basis 

functions (Rogers and Adams, 2002) are defined 

recursively starting with the zeroth degree (p = 0). These 

basis functions are given as  
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The ratio of the form 0/0 is defined as zero when 

evaluating these B-Spline basis functions. In the above 

equations, the basis functions are defined over a 

parametric domain ξ. The span of the parametric domain is 

known as the knot vector  
121 ...  pn , where ξi is 

the ‘i’ th knot, n is the number of basis functions and p is 

the polynomial degree.  

 A knot vector is a sequence in ascending order of 

parameter values. The shape of the basis functions is 

dependent on the knot spacing rather than the actual knot 

value. A knot vector is said to be open if its first and last 

knots have multiplicity equal to the polynomial order plus 

one. An important property of open knot vectors is that the 

resulting basis functions are interpolatory at the ends of 
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the parametric space. If the knots are evenly spaced then 

knot vector is called uniform otherwise it is non-uniform. 

As examples, for polynomial degree p = 0 and 1 using 

uniform knot vector {0 1 2 3 4 5 ...}, the basis functions 

are shown in figure 1 and figure 2. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from above figure 2 that linear basis 

functions using two control points at a time are identical 

with the FEM shape functions. Hence, the open uniform 

linear basis functions can be used as a shape functions in 

the FEM formulations. 

3. The Test Problems 

Three test problems are considered to study the 

effectiveness of the present method. They are a 

homogeneous bar subjected to distributed load acting 

along the longitudinal axis, one dimensional eigenvalue 

problem of finding the frequencies of longitudinal 

vibration of a rod and temperature distribution in a 

rectangular fin. 

3.1 A Homogeneous Bar with Distributed Load 

A homogeneous bar of length L, which is subjected to a 

distributed body load ‘f = x’, is considered as a first test 

case. The mathematical model for the physical system 

shown in figure 3 is represented by one dimensional 

Poisson equation that is given by, 
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With boundary conditions, 0)1(&0)0(  uu , 

 

 

 

 

 

 

The longitudinal displacement u(x) that is produced by the 

force is the solution. In the B-spline based Finite element 

method (BSFEM), the displacement field is approximated 

by, 
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In equation (3), ‘ne’ represents the number of nodes in an 

elements, Ni,p is the basis functions obtained from the B-

Spline basis functions for any point in the domain. The 

nodal displacements are represented by ui. In the present 

study, only the first degree (p = 1) approximation is 

considered. Generally, the B-spline basis functions are not 

interpolatory except when the knot vector is open uniform 

and the basis functions are linear. When an open uniform 

knot vector is used, the essential boundary conditions can 

be directly implemented by using elimination approach. 

Therefore, an open uniform knot vector is taken as 

parametric space coinciding with the coordinates of the 

domain. 

 The weak form for the governing equation (2) is 

obtained by using weigh function W, 
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Integrating by parts and using the approximating function 

(eqn.2) and the boundary conditions, a linear system of 

equations are obtained as KU = F where,       
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Where N represents the B-spline basis functions. The 

stiffness matrix (K) and the force vector (F) are evaluated 

by using two point gauss quadrature. The domain is 

discretised with 6 nodes and 5 elements with two nodes 

per each element. The knot vector is developed using these 

nodes as control points for the knot coordinated system 

then each knot vector range is mapped to a parametric 

coordinated system. The obtained results are compared 

with the exact solution given by 
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Fig. 2: B-Spline Basis for First 
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Fig. 1: B-Spline Basis for Zero 

degree 

Fig.3 Homogeneous Bar with Distributed Load 
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The figure 4 shows the displacement field along the length 

of the bar. It can be observed from the figure that the 

results obtained by the present method are in very good 

agreement with the analytical solutions. 

 

 

 

 

 

 

 

 

 

 

 

3.2 A one-dimensional eigenvalue problem 

In this section, BSFEM is applied to a 1D Laplace 

eigenvalue problem. The governing equations and the 

boundary conditions for the problem is  
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In equation (7), the λ is the eigenvalue, and u(x) is an 

eigen function. The eigenvalues are given by the squares 

of the integer numbers λ = 1, 4, 9, 16 . . . and that the 

eigenspaces corresponding to the eigenvalues are spanned 

by the eigenfunctions, sin (kx) for k = 1, 2, 3, 4 . . . . The 

B-spline Finite element method is used for the 

approximation of problem by considering the weak form 

of the governing equations that is given by 
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To obtain the approximate solution for the problem the 

domain is discretised with 8, 16, 32, and 64… nodes. All 

other parameters are identical with first test case - A 

Homogeneous Bar with Distributed Load. The eigenvalues 

obtained from the present method is compared with the 

analytical solution. The eigenvalues are tabled in Table (1) 

and found that the eigenfrequency is approaching to the 

exact values as the number of nodes is increasing. 

Table 1: Eigen values computed for different values of n 

Exact n=8 n=16 n=32 n=64 

1 1.0169 1.0037 1.0009 1.0002 

4 4.2751 4.0588 4.0137 4.0033 

9 10.4205 9.2998 9.0695 9.0168 

16 20.4880 16.9559 16.2203 16.0531 

25 35.1332 27.3567 25.5394 25.1298 

3.3 Temperature distribution in a fin 

Consider a heat transfer test case in a rectangular fin as 

shown in figure 5 (Lewis at al, 2004). The temperature 

distribution within rectangular fin is obtained by the B-

Spline FEM treating it as one dimensional case. The 

governing differential equation for the fin problem is 

given by 
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The boundary conditions for this test case are, 

Lxat      0
dx

dT
     and     0xat        

i
TT   

In the above equations, T is temperature in the domain, h 

is the heat transfer coefficient, k is the thermal 

conductivity, A is the area of the cross section, P is the 

perimeter and Ta represents the ambient temperature. 

 

 

 

 

 

 

 

 

 

 

The discretised equations based on the Galerkin approach 

for the fin problem is, 
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To obtain the approximate solution for the temperature 

distribution, the domain is discretised with 9 nodes and 8 

elements. All other parameters are identical with first test 

case - A Homogeneous Bar with Distributed Load. The 

temperature obtained from the present method, as shown 

in figure 6, is compared with the exact solution given by 

the reference (Lewis at al, 2004).  

 

4. Conclusion 

In this work, an attempt is made to use the B-spline basis 

functions as the shape functions in the finite element 

method. An open uniform knot vector is used to obtain the 

Fig.4. Comparison of field variable with 

exact solution 

Fig 5. Heat Transfer in a Fin 

http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22R.+W.+Lewis%22
http://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22R.+W.+Lewis%22
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first degree B-Spline basis function. For the spatial 

discretization, the Galerkin’s approximation method is 

employed. Two test cases have been performed to study 

the effectiveness of the current method. The results 

obtained by the present method are compared and found to 

be in good agreement with the analytical solution as well 

as the finite element method. 

 

Fig.6: temperature distribution along the fin 
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