

 1048 | International Journal of Current Engineering and Technology, Vol.4, No.2 (April 2014)

Research Article

International Journal of Current Engineering and Technology
E-ISSN 2277 – 4106, P-ISSN 2347 - 5161

 ©2014 INPRESSCO
®

, All Rights Reserved

Available at http://inpressco.com/category/ijcet

Implementation of Advanced Encryption Standard (AES) Algorithm Based on

FPGA

Ashwini R. Tonde
Ȧ*

 and Akshay P. Dhande
Ȧ

ȦP. R. Patil College of Engg. &Tech.Maharashtra, India

Accepted 10 April 2014, Available online 25 April 2014, Vol.4, No.2 (April 2014)

Abstract

The importance of cryptography applied to security in electronic data transactions has acquired an essential relevance

during the last few years. A proposed FPGA-based implementation of the Advanced Encryption Standard (AES)

algorithm is presented in this paper. The design has been coded by Very high speed integrated circuit Hardware

Descriptive Language. All the results are synthesized and simulated using Xilinx ISE and ModelSim software

respectively. This implementation is compared with other works to show the efficiency. The design uses an iterative

looping approach with block and key size of 128 bits, lookup table implementation of S-box. This gives low complexity

architecture and easily achieves low latency as well as high throughput. Simulation results, performance results are

presented and compared with previous reported designs.

Keywords: AES, FPGA, VHDL, encryption, decryption and block cipher.

1. Introduction

1
 Everyday millions of users generate and interchange large

volumes of information in various fields such as medical

reports, and bank services via Internet. All these

applications deserve a special treatment from the security

point of view, not only in the transport of such

information. Here, cryptography techniques are especially

applicable. DES considered being insecure for many

applications. This is due to the 56-bit key size being too

small, in January, 1999, distributed.net and the Electronic

Frontier Foundation collaborated to publicly break a DES

key in 22 hours and 15 minutes. And this is the reason,

why the National Institute of Standards and Technology

(NIST) opened a formal call for algorithms in September

1997. So a group of fifteen AES candidate algorithms

were announced in August 1998.

 Five algorithms were selected by NIST: Mars, RC6,

Rijndael, Serpent and Twofish as the final competitors in

August 2000. These algorithms were subject to further

analysis prior to the selection of the best algorithm for the

AES. Next, on October 2, 2000, NIST announced that the

Rijndael algorithm was the winner. Rijndael can be

specified with key and block sizes in any multiple of 32,

with a minimum of 128 bits and a maximum of 256 bits.

Therefore, the problem of breaking the key becomes more

difficult. In cryptography, the AES is also known as

Rijndael. AES has a fixed block size of 128 bits and a key

size of 128, 192 or 256 bits. The AES algorithm can be

efficiently implemented by hardware and software.

*Corresponding author: Ashwini R. Tonde

2. Literature review

The design uses an iterative looping approach with block

and key size of 128 bits (Hoang Trang and Nguyen Van,

2012). The design has been coded by Verilog HDL. All

the results are synthesized and simulated basing on the

Quatus 9.0, the Model Sim. So the latency of encryption is

51 clock cycles on Xilinx platform. Similarly, the latency

of decryption is 51 clock cycles. The algorithm achieves a

low latency and the throughput reaches the value of

1054Mbit/sec for encryption and 615 Mbit/sec for

decryption.

 An implementation of high speed AES algorithm based

on FPGA is presented, in order to improve the safety of

data in transmission (WANG Wei, CHEN Jie & XU Fei,

2012). Mathematic principle, encryption process and logic

structure of AES algorithm are introduced. So as to reach

the purpose of improving the system computing speed, the

pipelining and parallel processing methods were used. The

simulation results show that the high-speed AES

encryption algorithm implemented correctly. Design was

tested on Xilinx Virtex-5 FPGA. All the processes

including Implementation and Simulation are finished in

Model Sim ISE 13.3 development platform. Results show

that the system could complete the whole process correctly

in a 200MHz clock rate.

 This system aims at reduced hardware structure (Yang

Jun Ding Jun Li Na Guo Yixiong, 2010). And this system

has high security and reliability. The advantage of this

design is the fact that we do not need to store the round

key since they are currently calculated in accordance that

AES algorithm is used in the low requirements of the

terminal throughput at present, the high safety and cost-

http://en.wikipedia.org/wiki/Distributed.net
http://en.wikipedia.org/wiki/Electronic_Frontier_Foundation
http://en.wikipedia.org/wiki/Electronic_Frontier_Foundation

Ashwini R. Tonde et al Implementation of Advanced Encryption Standard (AES) Algorithm Based on FPGA

1049 | International Journal of Current Engineering and Technology, Vol.4, No.2 (April 2014)

effective reduced AES system is designed and validated

on the Altera Cyclone, aiming at reduced hardware

structure. Furthermore, this system can be widely used in

the terminal equipments which less demand on the

throughput. Throughput found for encryption and

decryption process is 593.45Mbps and 267.63Mbps

respectively.

3. AES Algorithm

Fig.1. Encryption and decryption process of AES

algorithm

1. AES encryption

The AES algorithm operates on a 128-bit block of data.

The key length is 128, 192 or 256 bits in length

respectively. The pre-rpound and last rounds differ from

other rounds, there is an AddRoundKey transformation in

pre-round and no MixCoulmns transformation is

performed in the last round as shown in fig. 1. In this

paper, we use the key length of 128 bits as a model for

general explanation.

1.1 SubBytes Transformation

The SubBytes transformation includes non-linear byte

substitution, operating on each of the state bytes

independently. This is done by using a once-precalculated

substitution table called S-box. S-box table contains 256

numbers (from 0 to 255) and their corresponding resulting

values. Advantage of performing the S-box computation in

a single clock cycle, reducing the latency and avoids

complexity of hardware implementation.

1.2 ShiftRows Transformation

ShiftRows transformation includes, the rows of the state

are cyclically left shifted. Row 0 remain unchange; row 1

does shift of one byte to the left; row 2 does shift of two

bytes to the left and row 3 does shift of three bytes to the

left.

1.3 MixColumns Transformation

MixColumns transformation includes, the columns of the

state are considered as polynomials over GF (2
8
) and

multiplied by modulo x
4
 + 1 with a fixed polynomial c(x),

given by: c(x)={03}x
3
 + {01}x

2
 + {01}x + {02}.

1.4 AddRoundKey Transformation

AddRoundKey transformation includes, a Round Key is

added to the State - resulted from the operation of the

MixColumns transformation - by a simple bitwise XOR

operation. The RoundKey for each round is derived from

the main key using the KeyExpansion algorithm. The

encryption/ decryption algorithm needs eleven 128-bit

RoundKey, which are denoted by RoundKey[0] to

RoundKey[10].

2. AES decryption

Reverse of encryption which inverses round

transformations to compute the original plaintext from

cipher-text in reverse order called as decryption. The

rounds of transformation of decryption use the functions

AddRoundKey, InvMixColumns, InvShiftRows, and

InvSubBytes successively as shown in fig. 1.

2.1 AddRoundKey

AddRoundKey is its own inverse function because the

XOR function is its own inverse. Here ciphertext state

XOR with rounkey . The round keys obtained from key

expansion algorithm selected in reverse order.

2.2 InvShiftRows Transformation

InvShiftRows functions in the same way as the ShiftRows,

only in the opposite direction. The first row is not shifted,

while the second, third and fourth rows gets shifted to

right by one, two and three bytes respectively.

2.3 InvSubBytes transformation

From once-precalculated substitution table called InvS-

box, InvSubBytes transformation is done. InvS-box table

contains 256 numbers (from 0 to 255) and their

corresponding values.

2.4 InvMixColumns Transformation

InvMixColumns transformation includes, ,polynomials of

degree less than 4 over GF (2
8
) which coefficients are the

elements in the columns of the state, are multiplied

modulo (x
4
 + 1) by a fixed polynomial d(x) = {0B}x

3
+

{0D}x
2
 + {09}x + {0E}, where {0B}, {0D}; {09}, {0E}

denote hexadecimal values.

3. Key Expansion Process

The AES algorithm takes the Cipher Key, ‘K’, and

performs a Key Expansion process to generate keys shown

in fig. 2. SubWord() is a function that takes a four-byte

input word and applies the S-box to each of the four bytes

to produce an output word. Function RotWord() takes a

word [a0,a1,a2,a3] as input, after performing a cyclic

Ci

Ashwini R. Tonde et al Implementation of Advanced Encryption Standard (AES) Algorithm Based on FPGA

1050 | International Journal of Current Engineering and Technology, Vol.4, No.2 (April 2014)

permutation returns the word [a1,a2,a3,a0]. Rcon[i], the

round constant word array, contains the values given by

[x
i-1

,{00},{00},{00}].

Fig. 2. Key Expansion Process

4. Implementation and Results

The design of AES algorithm is coded using VHDL

language. Simulation and synthesis of AES algorithm is

done on ModelSim software and Xilinx ISE software

respectively. We implemented the AES

Encryption/Decryption module on a Xilinx XC3S500E

Spartan-3E FPGA kit.

Fig. 3 Simulation result of AES encryption and decryption

design

Fig. 4 Synthesis result of AES design

In synthesis report number of logic utilised is shown in

Fig. 3. Number of bonded IOBs used are 515 but available

IOBs are 66, due to this reason encryption and decryption

design are implemented separately on Xilinx XC3S500E

Spartan-3E FPGA kit. From synthesis report we calculate

parameters like throughput, fmax and delay, for encryption

and decryption design separately, and finally all

parameters are again calculated for whole AES algorithm

design as shown in table 1.

 The test results show that the system could complete

the whole process correctly in a 230.92MHz clock rate.

Under the simulation clock 50MHZ, the simulation

waveform is shown in Fig.2 and in Fig.3, in which

plaintext_in and key_in are applied as input. When rst

signal is ‘0’ and sys_clk is applied and aes_en is ‘1’, we

will get encrypted data called as ciphertext after some

delay. And when we will change sttus of signal aes_in to

’0’ we will get decrypted date back called as plaintext.

Table 1. Comparison in implementation of AES algorithm

result

Conclusion

Efficient implementation of AES algorithm is presented in

this paper. High throughput is achieved in this design.

Results are compared with previous reported designs result

to show efficiency. Simulation of AES algorithm is done

on ModelSim software and implemented on Xilinx

XC3S500E Spartan-3E FPGA kit.

References

Hoang Trang and Nguyen Van (2012), An efficient FPGA

implementation of the Advanced Encryption Standard

algorithm IEEE 978-1-4673-0309-5/12.

WANG Wei, CHEN Jie & XU Fei (2012), An Implementation of

AES Algorithm Based on FPGA, IEEE 978-1-4673-0024-

7/10.

Yang Jun Ding Jun Li Na Guo Yixiong (2010), FPGA based

design and implementation of reduced AES algorithm, IEEE

978-0-7695-3972-0/10.

Adam J. Elbirt, W. Yip, B. Chetwynd, and C. Paar- (2001), An

FPGA-Based Performance Evaluation of the AES Block

Cipher Candidate Algorithm Finalists, IEEE 1063–8210/01

Nalini C, Nagaraj, Dr. Anandmohan P.V, & Poornaiah D.V,

V.D.kulkarni (2006), An FPGA Based Performance Analysis

Pipelining and Unrolling of AES Algorithm, IEEE 1-4244-

0716-8/06.

Ahmad, N. Hasan, R., Jubadi, W.M. (2010), Design of AES S-

Box using combinational logic optimization, IEEE Symposium

on Industrial Electronics & Applications (ISIEA), pp. 696-699,

Alex Panato, Marcelo Barcelos, Ricardo Reis, (2002) An IP of an

Advanced Encryption Standard for Altera Devices, SBCCI pp.

197-202.

