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Abstract 

  

Variation in cutting force components (FX, FY and FZ in three mutually perpendicular directions X, Y and Z) with cutting 

conditions viz. speed (v), feed (f) and depth of cut (d) during orthogonal turning of mild steel specimen using a HSS 

cutting tool was investigated in an automatic lathe machine. During the turning process, the cutting forces experienced 

insignificant variations with change in speed. Cutting force values were however observed to considerably increase with 

increase in feed and depth of cut. Subsequently these cutting forces could be modelled as function of the cutting 

conditions viz. v, f and d, by artificial neural network (ANN). The cutting force values modelled and subsequently 

predicted at various cutting conditions within the specified domain have been successfully correlated with the 

experimental results and literature review, with fairly good accuracy. During the validation process, it was possible to 

predict 100%, 94% and 100% of the cutting force values for FX, FY and FZ, respectively within a percentage deviation of 

±10%. This observation highlights the superior prediction capability of ANN technique in the current research area. 
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1. Introduction 

 
1
 It has been realized by most of the manufacturing 

engineers and researchers that in order to optimize the 

efficiency of metal cutting operations, efficient 

quantitative and predictive models that establish a 

relationship between a big group of independent input 

parameters and output variables are required for the wide 

spectrum of manufacturing processes, cutting tools and 

conditions, and engineering materials currently used in the 

industries (Wong, et al, 1999). Furthermore, it has been 

observed that proper optimization of the output variables, 

such as tool life, cutting forces, surface roughness, etc., 

through the optimization of input parameters like cutting 

speed, feed rate and depth of cut, results in a significant 

improvement in the economic performance of machining 

operations (Li and Li, 2002). One of these output variables 

that may either directly or indirectly affect the 

performance of other variables such as tool wear rate, 

machined surface characteristics and machining costs is 

cutting force (Kadirgama, et al, 2008). Cutting forces 

directly relate with the tool wear as higher the forces 

experienced by the tool; higher will be the tool wear rate. 

Subsequently the cutting forces also have an impact on the 

tool life, cutting cost, machine vibrations, and dimensional 

accuracies, cutting power, and machined surface 

characteristics. The same fact reveals the significance of 

investigating and modeling of cutting forces (Yun and 

Cho, 2001). During orthogonal turning of a cylindrical 
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work piece, the cutting force experienced by the tool may 

be considered as functions of the cutting conditions viz. v, 

f and d. These force values of a particular material can be 

modeled from the experimental results, by using artificial 

neural network (ANN) (Suksawat, 2010). The cutting 

force components can then be successfully predicted for 

any combination of the input variables within the specific 

domain. Such prediction provides immense industrial help 

in formulating the cutting conditions on the basis of 

cutting forces developed and thus deciding the subsequent 

manufacturing parameters required during orthogonal 

turning of mild steel. Out of these three forces, FY shows 

the most considerable effect during orthogonal turning 

operation as power required for machining is determined 

by the cutting force component, FY. 

 A neural network is similar to the biological nervous 

system, which is basically a connectionist system, in 

which various nodes called neurons are interconnected. An 

artificial neural network (ANN) can be defined as a model 

of reasoning similar to the human brain, where a large 

amount of complex information can be stored and 

processed simultaneously by each neuron along the entire 

domain. A typical neuron receives one or more input 

signals and provides an output signal depending on the 

processing function of the neuron. This output is 

transferred to connected neurons in varying intensities, the 

signal intensity being decided by the weights assigned. 

ANN has the advantages of (i) modelling the data where 

the input-output relation is either unknown or nonlinear, 

(ii) adaptive learning during training (iii) real time 
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applications aided by a very fast computational speed. The 

conventional computational techniques follow an 

algorithmic approach, where a set of instructions in the 

specified order is followed to solve a problem. The 

relationship between each stage is required for solving the 

problem. On the other hand, neural network technique is 

data driven and the solution can be obtained even if the 

exact relationship is unknown. This can be obtained if a 

number of input-output data sets are available. Once the 

ANN architecture is fixed, the output for any combination 

of input variables can be predicted. 

 The most popular neural networks are feed forward 

networks. Feed forward network architecture consists of 

three distinct layers: the input layer, the hidden layer(s), 

and the output layer. Each layer consists of a number of 

neurons. The output from the neurons of one layer is 

transferred as input to neurons of the succeeding layer. 

The first layer, called an input layer, receives data from 

the outside world. The second layer, called the hidden 

layer, does not have any direct contact with the outside 

world and is used to help in extracting higher-level 

features and to facilitate generalization of outputs. The last 

layer is the output layer, which sends information out to 

users. For a given input vector, it generates the output 

vector by a forward pass. The data are fed to the network 

at the input layer and propagated with weights and 

activation functions to the output layer to provide the 

response. Once the data at the output neuron is reached, 

the mean squared error (MSE), which is the difference 

between the network output vector and the known target 

vector, is computed and back-propagated to modify the 

weights for the entire network. 

 For orthogonal turning of mild steel, the input layer of 

ANN consists of three neurons representing the three 

cutting conditions viz., v, f and d, as shown in Fig. 1. The 

output layer on the other hand consists of one neuron 

representing FX, FY or FZ. Once the proper network 

architecture is determined, FX, FY and FZ can be 

successfully predicted for any combination of the input 

variables within the specified domain (Banerjee, et al, 

2011). 

        
 

Fig. 1 A typical neural network architectre for modeling 

cutting force 

 

2. Experimental procedures 

 

Four numbers of mild steel rods of 24 mm diameter were 

taken up for orthogonal turning operation at four different 

depths of cuts. The total of 64 readings (the combination 

of four speeds, four feeds and four depths of cuts) could 

not be taken from a single rod because this would have 

required a rod of substantial length and resulted in 

considerable vibration. So, it was decided to take 16 

readings in a rod of particular depth of cut. The details 

regarding the cutting conditions investigated have been 

shown in Table 1. The turning operation was carried out in 

an automatic lathe machine (MAKE: HMT MACHINE 

TOOLS LIMITED, MODEL: NH26). High speed steel 

(HSS) was used as the cutting tool material.  HSS are 

basically high carbon steels with significant quantities of 

W, Mo, Cr, V and Co. 

  During each turning operation, the cutting forces 

viz. FX, FY and FZ were measured in three mutually 

perpendicular directions, X, Y and Z, as indicated: 

FX = Acts in the direction of the feed (axial direction) and 

is called the feed force. If unchecked it can lead to 

dimensional inaccuracy and vibration. 

FY = Acts in the tangential direction and is called the 

cutting force or power component. 

FZ = It acts in the radial direction and is called the thrust 

force (Jain, 2007; Lal 2007). 

 Out of these three force components experienced 

during an orthogonal turning operation, the maximum 

value is for cutting force followed by thrust force and feed 

force. Thus cutting force has the maximum effect on the 

tool wear and tool life (Altintas, 2000; Gokkaya 2010).  

Hence for optimization purpose, this force, FY, is most 

significant to be analyzed. 

 The cutting forces were measured by a piezoelectric 

tool dynamometer (MAKE: IEICOS LATHE TOOL 

DYNAMOMETER, MODEL: 620B) along with a digital 

multi component force indicator (MODEL: 652). In order 

to eliminate experimental errors, five consecutive readings 

of each parameter were taken at a particular set of cutting 

condition and the average of these five was considered for 

subsequent modeling. 

 After evaluating cutting force values for different 

cutting conditions, the same were modeled by artificial 

neural network (ANN). The ANN modeling was carried 

out by the multiple layer perception (MLP) feed forward 

back propagation network.  The cutting conditions viz. v, f 

and d representing three neurons in the input layer and 

cutting force components representing the neuron in the 

output layer formed the data sets for training the network. 

‘Neural Network’ tool box available with the MATLAB 

(Release 7) software package was used for the present 

modeling. Training of the neural network was done using 

the ANN tool kit of MATLAB software, using 

‘TRAINLM’ function. ‘TRAINLM’ is a network training 

function that updates weights and bias values in a back 

propagation algorithm according to Levenberg–Marquardt 

optimization. Levenberg–Marquardt algorithm is a highly 

efficient method for solving non-linear optimization 

problems (Robi and Dixit, 2003). Single layer hidden 

neurons were used in the network architecture. The 

number of neurons in the hidden layer, the transfer 

functions at the input-to-hidden layer and hidden-to-output 

layer were optimized by trial and error method during the 

network training and testing stages. The mean square error 

(MSE) during the training and testing was determined for 

each trial. The network architecture was finally frozen 

v 

f 

d 

Fx, Fy, Fz 
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based on the minimum MSE value obtained during both 

the training and testing stages. Out of the total 64 number 

of data sets, 32 and 20 data sets were used for respectively 

training and testing operations. 12 data sets from the 

remaining were used for validating the trained network 

architecture. Once the proper network architecture was 

arrived at, the cutting force components could be 

successfully predicted for any combination of input 

variables (v, f and d), within the specified domain. 

 

Table 1 Different Cutting Conditions for prediction of 

Cutting Forces 

 

3. Results and Discussion 

 

3.1 Experimental and Predicted Curves for Cutting Forces 

 

The experimental values were obtained from the turning 

operation of mild steel. The results revealed that the 

cutting force almost remains constant with change in 

cutting speed while it increases with increase in feed and 

depth of cut, as shown in Figure 2. These trends are well 

correlated with the available open literature and earlier 

studies (Satyanarayana, 2011; Malagi and Rajesh, 2012; 

Kanthraj, et al, 2012).  

 

3.2 Modeling and Prediction of Cutting forces by Artificial 

Neural Network 

 

In order to obtain the prediction of cutting forces with 

variation in cutting parameters, artificial neural network 

(ANN) modeling was carried out. The cutting force 

components being functions of the cutting conditions can 

be expressed as: 

FX, FY, FZ = F (v, f, d)                                                    (1) 

  

The ANN architecture used in present modeling consists 

of three layers, viz. an input layer of three neurons 

representing the cutting conditions of v, f and d, a hidden 

layer of n numbers of neurons and an output layer with 

one neuron representing the cutting force components. 

Appropriate values for the weight and bias of the network 

architecture were arrived at by training the network using 

several data sets. Out of total number of 64 input-output 

data sets obtained from experimentations, it was decided 

to use 32, 20 and 12 data sets for the network training, 

testing and validation purposes respectively. The 

validation data sets were not used earlier for the testing or 

training purposes. Both training and testing of the network 

were carried our independently. A number of numerical 

trials were carried out with single hidden layer neural 

network. The tansig, logsig and purelin transfer functions 

were tried with while simultaneously varying the number 

of neurons in the hidden layer, in order to arrive at the best 

network architecture. The sum squared training error goal 

for FX, FY and FZ was fixed at 0.00001. After a number of 

trials with various initial weights and biases, the best  

Table 2 Best fit network architectures for the investigated 

cutting force components 

 
Force 

Component 

Hidden 

Neurons 

1st Transfer 

Function 

2nd Transfer 

Function 

FX 5 logsig purelin 

FY 6 logsig purelin 

FZ 4 logsig purelin 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig. 2 Variation of FY with (a) Speed and (b) Feed at 

d=0.64 mm and (c) Depth of Cut at V=550 rpm 

 

neural network architecture was frozen for which (i) 

functional RMS error was minimum, (ii) minimum 

number of data sets has a deviation error of 10 %, (iii) 

maximum deviation during testing and training is within 

20 %, and (iv) minimum variation in RMS functional error 

during training and testing. Table 2 shows the details of 

the best fit ANN architecture for cutting force 

components. Once the network was frozen, it was required 

to establish the confidence in the network architecture for 

the prediction of FX, FY or FZ. Therefore, the trained 

network was used for prediction of FX, FY or FZ using the 

12 validation data sets. 

Depth of Cut(mm) Feed(mm/rev) Speed(RPM) 

0.24, 0.50, 0.64 and 
0.80 

0.05, 0.20, 0.52 and 
0.80 

114, 325, 550 and 
930 



Sanjib Banerjee et al                                                                 International Journal of Current Engineering and Technology, Special Issue-2 (Feb 2014)                                                                                                         

 

 130 | International Conference on Advances in Mechanical Sciences 2014 

 

Table 3 Errors in Prediction of Cutting Force Component 

 
Force 

Component 

Training 

Max. Error Max. % Error RMSD Error 

FX 3.053 23.138 1.281 

FY 5.240 10.322 2.915 

FZ 4.567 10.953 1.150 

 Testing 

FX 3.287 17.611 1.451 

FY 4.709 10.328 2.795 

FZ 0.876 7.614 1.183 

 Validation 

FX 2.810 17.745 1.065 

FY 4.333 8.597 3.160 

FZ 1.078 7.704 1.170 

 

Fig. 3 Variation of predicted cutting force parameters with 

experimental force parameters for the Validation data set 

of FY 

 

Table 3 gives the values of maximum absolute error, 

maximum percentage error and RMS error calculated for 

FX, FY and FZ during training, testing and validation stages 

separately. Figure 3 shows the plots of experimental vs. 

predicted values of FY during validation. The FX and FZ 

values showed similar prediction accuracy as that of FY. 

For perfect prediction, all the points should lie on a line 

inclined at 45° to the x-axis shown in the figure. Dashed 

lines representing the boundaries of ±10 % deviations are 

also shown in the figures. Figures reveal that most of the 

points lie very close to the line of prefect prediction. The 

RMS error in the prediction of FY is 3.16. The maximum 

error in the prediction is 4.333, where the percentage error 

is 8.597%. The RMS error in the prediction of FX and FZ 

are 1.065 and 1.170 respectively. The maximum errors in 

the prediction are 2.81 and 1.078, whereas the percentage 

errors are 17.745 % and 7.704 % respectively. The above 

observation shows very good prediction of FX, FY or FZ by 

the present ANN modeling. This observation together with 

the low RMS errors registered, highlight the superior 

prediction capability of this technique. The prediction also 

indicates that for most of the cases, the predicted values of 

the cutting force components hold similar trend with the 

experimental results. For all the three force components 

FX, FY and FZ, the predicted cutting force values almost 

remains constant with increase in cutting speed but 

increases with increase in  feed and depth of cut. Figure 2 

shows the close comparison between experimental and 

predicted values of FY for different cutting conditions, 

revealing the accuracy of the present ANN model within 

the specified domain. The above ANN modeling may thus 

be successfully used in formulating the cutting conditions 

(speed, feed and depth of cut) on the basis of Cutting 

Forces as demanded by a specific application. 

 

Conclusions 

 

1) The cutting force components were investigated 

during orthogonal turning operation for various 

cutting conditions of speed, feed and depth of cut. 

2)  The experimental results revealed that the cutting 

force components almost remain constant with 

increase in cutting speed while they  considerably 

increase with increase in feed and depth of cut.  

3) The cutting force components were modeled as 

function of three independent cutting parameters 

 viz. speed, feed and depth of cut, by artificial 

 neural network (ANN).  

4) The cutting forces subsequently predicted at  various 

cutting conditions within the specified  domain 

have been correlated with the  experimental results 

with fairly good accuracy. During the validation 

process, it was possible to predict 100%, 94% and 

100% of the cutting force  values for FX, FY and FZ, 

respectively within a percentage deviation of ±10%. 

This observation highlights the superior prediction 

capability of  ANN technique in the present 

research area. 
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