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Abstract 

  

A simple and efficient coupled displacement field method is developed to study the large amplitude free vibration 

behavior of the moderately thick square plates.  A single term trigonometric admissible displacement field is assumed for 

one of the variables, say, and the total rotations (in both X, Y directions). Making use of the coupling equation, the 

spatial variation for the lateral displacement field is derived in terms of the total rotations.   The coupled displacement 

field method makes the energy formulation to contain half the number of unknown independent coefficients, in the case of 

a square plate, contrary to the conventional Rayleigh-Ritz method.   The lesser number of undetermined coefficients 

significantly simplifies the vibration problem.   The expressions for the linear and nonlinear fundamental frequency 

parameters for the all edges simply supported and clamped moderately thick square plates are derived.   The numerical 

results obtained from the present formulation are in very good agreement with those obtained from the existing 

literature. 
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1. Introduction 

 
1
 Knowledge of fundamental frequency  parameters of 

moderately thick plates is important  and has to be 

considered in the initial design phase of such structural 

members. The energy methods provide a convenient 

means for computing the fundamental frequency 

parameters of these structural  members and the solutions 

obtained using this approach are upper bounds and the 

accuracy of the solution depends on the admissible 

functions chosen for the lateral displacement and total 

rotations. 

 The concept of coupled displacement field (CDF) 

which was successfully used in the finite element(FE) 

analysis and reported in the open literature.  A continuum 

analogy of the FE analysis with the CDF method has not 

received much attention except in the formulation of Zhou 

(2001) where the two fields (displacement and rotation) 

are coupled through an equation which is dependent on the 

applied load and is different from the FE method. The 

concept of coupled displacement field method to study the 

large amplitude free vibration behavior of uniform 

Timoshenko beams has been demonstrated successfully 

(G.Venkateshwar Rao et al 2004)( G.Venkateshwar Rao et 

al 2005)(K Meera Saheb 2005 et al). The energy method 

gives exact solutions if the chosen admissible functions 

represent the mode shape of vibration exactly.  Singh and 

Rao et al (1978) have studied the large amplitude free 
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vibration of isotropic and composite moderately thick 

square plates using the FE formulation. In this study the 

authors made an effort to study the free vibration of 

uniform shear deformable moderately thick square plates 

using the coupled displacement field method. 

 The fundamental frequency parameters for the thin 

square plates  are evaluated in Refs. (H.N Chu et al 

1956)(Chu Mei 1973)(C.M Wang et al 2005) for several 

configurations of the plates including the different in plane 

edge load conditions and boundary conditions.  If the 

plates are moderately thick, the effect of the shear 

deformation and rotary inertia have to be considered and 

this effect is introduced by another set of admissible 

function for the total rotation.  Thus if n admissible 

functions are chosen for the total rotation, another n 

admissible functions for the lateral displacement result in. 

This makes the vibration problems to contain 2n 

unknowns, in general, and the use of the classical R-R 

method(K.Meerasaheb et al 2009) yields 2n homogeneous 

simultaneous equations which are to be solved for 

obtaining the fundamental  frequency parameters.  

However, if an accurate single term admissible function is 

used in the R-R method, a two unknown coefficients 

problem has to be solved, where one unknown coefficient 

is associated with the lateral displacement / total rotation 

and the other unknown coefficient is associated with the 

total rotation / lateral displacement. 

 In this paper, the authors propose to use a new method 

called  the CDF method and this significantly simplifies 
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the formulation of the vibration problem of  moderately 

thick square plates.  In this paper the fields for the total 

rotation and the lateral displacement fields are coupled by 

using a coupling equation, which is derived for obtaining 

the static solution of shear deformable moderately thick 

square plates(C.M Wang et al 2005).  This method reduces 

the magnitude of the problem by reducing the number of 

unknowns from 2n to n, for the  multi-term admissible 

functions and from two to one for  the single term 

admissible functions and decreases the effort involved in 

the solution  procedure considerably to obtain the 

fundamental frequency parameters. 

 The practical utility of the CDF method is 

demonstrated by solving the vibration problem of uniform  

and isotropic moderately thick  square plates  using the 

CDF method.  The solution procedure and the numerical 

results obtained speak for themselves about the simplicity 

of the CDF method applied to the large amplitude free 

vibration problem of the moderately  thick square  plates 

compared to the finite element method.  The numerical 

results for moderately  thick plates, with all edges simply 

supported  boundary condition are given along with the 

results obtained from the  finite element method(K.K.Raju 

et al 1978) and the comparison clearly shows the efficacy 

of the proposed CDF method. 

 

2. First order shear deformation theory of plates 

 

The simplest shear deformation plate theory is the first 

order shear deformation plate theory (or FSDT), also 

referred to as the Mindlin plate theory (Mindlin, 1951) and 

it is based on the displacement field. 

 

),(),,( yxzzyxu x                                             (1) 

),(),,( yxzzyxv y                                                   (2) 

),(),,( yxwzyxw                                                             (3) 

 

Where u and v are in plane displacements in x and y 

direction, w is transverse displacement along z direction, 

θx and θy denote rotations about the y and x axes 

respectively. In FSDT, shear correction factors are 

introduced to correct the discrepancy between the actual 

transverse shear stress distribution and that computed 

using the kinematic relations of FSDT. The shear 

correction factor k depend not only on the geometric 

parameters, but also on the loading  and boundary 

conditions of the plate.  However, a value of k=5/6, the 

widely used value of the shear correction factor, is used in 

the present study. 

 

3. Coupled Displacement Field (CDF) method for 

plates 

 

In this method an admissible functions for x and y which 

satisfies all the geometric boundary conditions of plate 

domain are  assumed.  Note that these functions may 

satisfy some or all the natural boundary conditions also.   

The field for  lateral displacement w is evaluated using the 

coupling equation taken from the static equilibrium 

equation independent of the externally applied load 

term(C.M Wang et al 2005). 
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 It may be noted that only one coupling equation is 

obtained for the square plate.  Though the admissible 

functions  x  and y,  in general can be written in a series 

form, here a single term admissible functions  for x  and 

y   is chosen again with same intention of simplicity and 

better understanding of the CDF method as  

 

),(1 yxfx                            (5) 

                                         

),(1 yxfy                                    (6) 

 

where  is the undetermined coefficient and f1(x) is the 

single term admissible function.  Note that the functions 

for  x  and y       are the same, as the square plate is 

considered in the present study. 

 Substituting the  admissible functions for  x   and  
y  

as given in (5) and (6) in (4), the coupled displacement 

field for the  lateral displacement w is obtained, as  
)(2 xfw   

 Note that because of the use of the coupling equation, the 

transverse displacement distribution w contains the same 

undetermined coefficient  as existing in the yx  &
 

distribution. In general, a 2n undetermined coefficients 

problem in the R-R method reduces to an n undetermined 

coefficient problem in the CDF method. The linear 

fundamental frequency parameter is obtained from the 

following simple equation. 
 

0


d

TUd
    

The functions f1(x) and f2(x) are given later  as per the 

boundary conditions of the plate  considered 

 

4.   Linear Vibrations  

 

The detailed procedure for the CDF method is discussed in 

this section for the case of evaluating the fundamental 

linear frequency  parameter of a uniform simply supported 

moderately thick  square plate for which the exact 

vibration mode shape (for shear flexible plate)for the 

transverse displacement w is well known.  In the CDF 

method the admissible functions for x   and  y     are 

assumed in the functional form, noting the similarity 

between  , x  and , y   and satisfy the boundary 

conditions and symmetric conditions for the fundamental 

mode as 

a

y

a

x

a
x


 sincos                                                      (7) 

a

y

a

x

a
y


 cossin                        (8) 
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substituting  ( 7  ) and (8)in (9) and after integration and 

after evaluation of the constant of integration 
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Substituting (7), (8) and (10)in (11) and  after 

simplification  as 
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The expression for kinetic energy of plate is given  as 

T=    
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Substituting (7), (8) and (10) in the above (13)  and after 

simplification 
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By minimizing the Lagranzian with respect to 

undetermined coefficient   
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5.   Large amplitude vibrations  

 

Large amplitude free vibrations can be studied, once the 

coupled displacement field for the lateral displacement w 

for an assumed  is evaluated using the 

principle of conservation of total energy at any instant of 

time which states that 

U+T+W= Constant 

The tension developed in the plate in x-direction as 

dx
dx

xdw
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The tension developed in the plate does not contain any 

shear flexible terms. 
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Substituting (10) and (18) in (19)  and after simplification 
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Large amplitude free vibrations  can be studied, once the 

coupled displacement field for the lateral displacement ‘w’ 

for an assumed      distribution  is evaluated 

using the principle of conservation of total energy at any 

instant of time, neglecting damping, which states that  

U+T+W=constant                                   (21) 

Substituting  (12), (14) and (20) in (21) and after 

simplification 
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By following the  harmonic balance method[3] the 

expression for frequency ratio as  
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Substituting  (25) in (24) and  after simplification as 
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From (26) frequency ratio is function of 



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



a

h
 and  

amplitude ratio. In the case of a all edges clamped square 

plate  the  trigonometric admissible function for  x  and 

y   that satisfies the required boundary conditions is taken 

as  
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and by following the similar procedure as discussed  for 

all edges simply supported square plate the ratios of the 

nonlinear to the linear radian frequencies can be obtained 

for the clamped-clamped  square plate as 
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6.   Numerical results and discussion 

 

Using the formulation described above, the large 

amplitude vibration behavior of a uniform moderately 

thick square plate is obtained in terms of  or 

(Ratio of non-linear radian frequency to the linear radian 

frequency or non-linear time period to the linear time 

period) in terms of various    (maximum amplitude 

ratios) and h/a (thickness ratios).   As a demonstration of 

the proposed   formulation, the plate is considered with 

axially immovable edges (Fig.1). 

The present results in terms of     are presented in 

Table1for all edges simply supported and Table2 for all 

edges clamped.  For the sake of comparison and validation 

of  the proposed method, the same results obtained by the 

finite element method FEM(K.K.Raju et al 1978 ) are 

included in  Tables1 and 2.   The present results for the 

extreme  case of h/a=0.001   and h/a=0.2 match very well 

with the results of FEM, the maximum error being 1.5% of 

this extreme case.  

 
  

Fig.1 Uniform all edges simply supported moderately 

thick square plate 

 

Conclusions 

 

The concept of coupled displacement field, applicable to 

square plates, presented in this paper is successfully 

applied to study the  large amplitude free vibration 

behavior of uniform shear flexible plate with edges 

immovable. Elegant and accurate closed form expressions 

for  for all edges simply supported and clamped 

are obtained in terms of thickness ratios and maximum 

amplitude ratios.  The results obtained using the present 

formulation are found to be in good agreement with those 

results obtained by FEM  for a wide range of maximum 

amplitude ratios, including the thin plates and moderately 

thick plates.  
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