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Abstract 

  

This paper presents a finite element simulation and buckling analysis of layered composite structures. The shell element 

is based on the Reissner-Mindlin first-order shear deformation theory and the finite element method account for full 

geometric nonlinearity imposing large deformations and rotations. Finite rotations are treated by Rodrigues 

parameterization.  The combinations of enhanced assumed strain (EAS) in the membrane strains and assumed natural 

strains in the shear strains are implemented to improve the shell element behavior. Stability analysis of anisotropic short 

open cylinder, layered cylindrical shells with different lamina sequenceand a hinged roof structure are presented 

including snap-through and snap-back problems.  The present simulations are compared with those obtained by finite 

element analyses based on first-order transverse shear deformation moderate or large rotation or refined von Kármán-

type theories in earlier literature. 
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1. Introduction 

 
1
 Due to their high specific modulus compared to 

conventional materials, composite materials are 

increasingly being used in various structural applications. 

These layered composite thin-walled structures exhibits 

quite unique response even under simple loading and 

geometric conditions, due to the low natural damping. The 

challenge in this field of engineering exists to improve the 

static as well as dynamic behavior of structures.  

 The finite element analysis of shell structures focusing 

on computational aspects can be traced back to, (Ahmad,et 

al, 1970) presented degenerated 8-node shell element from 

16-node three-dimensional continuum elements. (Chang 

and Sawamiphakdi, 1981) analyzed large deformations of 

a thin-walled cylinder under internal pressure using 

degenerated approach and updated Lagrangian 

formulation. (Jun and Hong, 1988) used very similar 

approach to analyze buckling behavior of laminated 

cylindrical shells. (Kanok-Nukulchai, et al, 1988) 

developed finite element formulations of two-degenerated 

thin-walled elements accounting wrapping restraint.In a 

degenerated shell element, nodes are placed at the mid-

surface of the element and assumptions of shell elements 

are imposed. (Saigal, et al, 1986) simulated nonlinear 

finite element (FE) analysis of imperfect laminated shells 

using Kirchhoff-Love model. (Schmidt and Reddy, 1988), 

(Palmerio, Reddy and Schmidt, 1990) used first-order 

shear deformation model (FOSD) to simulate the layered 

composite structures with in the moderate rotations and 

extended to large rotation analysis by (Kreja, Schmidt and 
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Reddy, 1997). (Brank, et al, 1995) developed layer-wise 

shell theory with the description of rotations using shell 

director.  (Reddy, 1990) analyzed FE-simulation of 

moderately thick shells with in the von Kármán-type 

nonlinearityusing third-order shear deformation hypothesis 

(TOSD). Very less literature can be found on the 

geometrically nonlinear problems dealing with large 

rotations (e.g. Başar, et al, 1993, Masud,et al,2000, Kreja 

and Schmidt, 2006, Arciniegaand Reddy, 2007). 

To analyze the thin walled and shell structures, in addition, 

solid-shell elements with eight nodes are being widely 

used.  (Dommisy, et al, 1995) and (Sze,et al, 1997) are the 

first authors to investigate a solid-shell approach for the 

analysis of plates and shells.Solid-shell elements have 

only translational degrees of freedom in the nodes located 

at the top and bottom surfaces, which alleviates the 

difficulties associated with complex shell formulations 

with nodal rotations.  

 For instance, shear locking effects are usual in plate 

and shell finite elements based on Reissner-Mindlin or 

FOSD formulations, as thickness values tend to zero. The 

efforts by many investigators have been directed at 

overcoming the transverse shear locking problem. 

Solutions originally proposed to alleviate locking are 

reduced integration or selective integration. Another type 

of method which is adopted in the present element is the 

assumed natural strain (ANS) and enhanced assumed 

strain (EAS) method. The early use of ANS method can be 

traced to (Hughges and Tezduyar, 1981), (Bathe and 

Dvorkin, 1985). A systematic development of a class of 

assumed strain methods is presented by (Simo and Rifai, 

1990). The EAS method was studied by (Andelfinger and 

Ramm, 1993) and (Fontes Valente,et al, 2005) to improve 
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the behavior of the shell elements.  (Kim,et al, 2007) 

developed 4-node co-rotational shell element with 

assumed natural strain and with enhanced strains to 

analyze the laminated composite structures.  (Caseiro,et al, 

2013) gave brief description and development of EAS 

three-dimensional finite elements for the alleviation of 

locking phenomena. (Pramin, et al, 2012) developed co-

rotational 8-node degenerated element with assumed 

natural and enhanced assumed strains. (Cho,et al, 1998) 

proposed a solid-shell element model based on the 

assumed strain formulation for buckling and post-buckling 

analysis of shell structures. (Kinkel,et al, 2007) developed 

solid-shell element with assumed natural strain and 

enhanced assumed strains by parameterizing the finite 

rotations with Rodrigues approach. 

 The present paper deals with geometrically nonlinear 

static analysis of composite plate and „snap-

through‟buckling analysis of composite laminated 

cylindrical shell structures in the framework of the first-

order transverse shear deformation theory (FOSD). The 

theory and the finite element method account for full 

geometrical nonlinearity, thus they account for arbitrary, 

finite rotations. The finite rotation theory (FRT) finite 

element formulation developed by (Lentzen, 2009) and 

extendedto stabilityanalysis in (Schmidt, et al, 2013) is 

applied. Here we deal with geometrically nonlinear static 

and stability problems of composite laminated structures. 

The Riks–Wempner-Ramm arc-length control method is 

used to trace equilibrium paths in the pre- and post-

buckling range of deformation. 

 We consider standard benchmark problems of 

composite laminated plate and shell structures. In 

particular, we compare the results with those that have 

been obtained in our earlier paper (Kreja and Schmidt, 

2006) where comparative finite element analysis has been 

performed using a variety of geometrically nonlinear shell 

theories. 

 

2. Finite Rotation Shell Theory and Finite Element 

Method 
 

Concerning the underlying theory and finite element 

method, the present paper is based on the FOSD shell 

theory for small strains and finite rotations of (Habip, 

1965) and the FE implementation of (Gruttmann and 

Wagner, 2006) and (Lentzen, 2009).  

 
Fig.1 Definition of the coordinate systems in the FRT-

element 

 

Figure 1 shows the four-node element with the global   , 
the local   , the natural    and the orthonormal 

material    coordinate systems. The position vector to the 

reference surface in the initial configuration at node Iis 

denoted as  . The Jacobian matrix   can be used to relate 

the local coordinate system to the natural coordinate 

system. The position vector  to an arbitrary point in shell 

space is described as 

   (   )    (   )            (1) 

wherez denotes the thickness coordinate ranging from the 

bottom to the top of the considered shell and  is the shell 

director. 

In the framework of FOSD or Reissner-Mindlin 

hypothesis, the Green strain-tensor components for fully 

nonlinear finite rotation strain-displacement relations are 

obtained as (see Habip (1965))  
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Here  denotes the thickness coordinate and an overbar 

indicates the deformed configuration. Due to thinness of 

the regarded plates and shells the components  
 

  and 

 
 

  are neglected.  

 There are no kinematical restrictions with respect to 

the range of rotations. The director is assumed to be 

inextensible and the rotations are parameterized with the 

Rodriguez formulation.In order to overcome various types 

of locking, the ANS procedure suggested by (Bathe and 

Dvorkin, 1985), (Hughes and Tezduyar, 1981) has been 

used. 

 

2.1 Variational formulation 

 

The finite element developed by (Lentzen, 2009) is based 

on the shell element of (Gruttmann and Wagner, 2006). In 

the present element a displacement based variational 

principle is chosen in order to reduce the number of 

internal variables. The variational formulation reads 

 

∫ (    ̂
 

)   ∫ (    
 

)   ∫ ( (   ̈))
 

      (4) 

 

where   is the second Piola-Kirchhoff stress tensor,  ̂is the 

strain field ,    is the virtual displacement vector ,   is the 

traction vector on the boundary,   is the mass density,   is 

the body force density and  ̈ is the acceleration vector.  

 The strain field is approximated by two fields such as 

Green-Lagrangian strain field and enhanced strain 

field ̃as 

 ̂      ̃                     (5) 
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The enhanced strain field is approximated by the 

following relation  

* ̃+  
|  |

| |
,  -*  +             (6) 

where | |denotes the determinant of Jacobian 

matrix ,|  |denotes the determinant of Jacobian 

matrix     |     at the element centroid in the 

natural coordinate system, ,  -is the interpolation 

function with enhancement levels,*  + is the vector of the 

internal strain parameters corresponding to the enhanced 

strains.  

 Detailed description of level of enhancement, 

corresponding interpolation functions and following 

additional internal degrees of freedom authors referred to 

EAS approach in (Lentzen, 2009). 

The variation of the Green-Lagrange strain tensor 

components are 
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 With ̅     , itfollows that  ̅       . The 

variation of the director and its linearization can 

beobtained by  

  ̅      ̅,             (6) 

where   is the axial vector of rotation expressed in terms 

of virtual rotations as  

       

and  is determined as 

           
  

with   
      

  
   and      

      

  
 

where  is the rotation tensor and   is the rotation angle. 

Here a total Lagrangian approach is adopted and since the 

kinematical relations between the strain and the 

displacements and the rotations is nonlinear, the second 

variation is  

    ∫ (     ̂
 

      ̂)                                         (7) 

The variation of  ̅ is highly nonlinear and the scalar 

multiplication of an arbitrary vector kwith the 

linearization   ̅is  
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2.2System matrices and vectors 

 

After introducing the shape functions to interpolate 

mechanical quantities, the generalised displacements * + 

and integrated constitutive matrices ,  - for the elastic 

material, the following set of equations can be derived on 

element level from the variational formulations  

[
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The incremental stiffness matrix [   ] is the only matrix 

containing the geometrical nonlinear stiffness,  -. 

Further, {  
 
}is the vector containing the nodal forces and 

moments,{  
 }is the vector containing imbalance 

forces,*  
 + is the vector containing the in balance forces 

for additional internal degrees of freedom. 

 

3. Numerical examples 

 

3.1 Asymmetric cross-ply laminated plate strip under 

uniformly distributed transverse load 

 

Here, the considered example is an asymmetric cross-ply 

laminated plate with hinged edges as shown in Figure 2. 

The geometry is defined by a = 9.0 in, b = 1.5 in, h = 0.04 

in and the material properties are taken as E11 = 2.0 · 10
7
 

psi, E22 = 1.4 · 10
6
 psi, ν12 = 0.3, G12= G13= G23= 0.7 · 10

6
 

psi. 

The deflection at the center of the plate is simulated by the 

present FOSD FRT model. Due to the dual symmetry of 

the analyzed structure, a quarter of the plate is modeled. In 

Figure 3 the normalized transverse deflection is compared 

with the existing literature given by (LRT56-Kreja, 2013), 

(Kim, et al, 2007), (Kreja and Schmidt, 2006) (LRT5, 

MRT5) together with the reference solutions of(Reddy, 

1990) and (Basar,et al, 1993). 

 
Fig.2 Two edges hinged composite laminated plate 

 

The von Kármán-type model of (Reddy, 1990) and the 

(MRT5-Kreja and Schmidt, 2006) model are capable of 

dealing with deflections in the range of moderate rotations 

marked in Figure 3. (Basar,et al, 1993) solved this 

problem using a fully nonlinear formulation accounting for 

finite rotations along with higher order shear defamation 

theory.  
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Fig.3 Normalized center deflection of the plate strip under 

pressure load 

 

Our (FOSD FRT) results agree very well with those of 

(Basar, et al, 1993), (LRT56-Kreja, 2013) and (Kim,et al, 

2007). On the other hand, the FOSD FRT solution differs 

from the other simplified nonlinear models LRT5 and 

MRT5. 

 

3.2 Stretching of an isotropic short cylinder 

 

The considered example is a well-known nonlinear 

benchmark problem of a short open cylindrical shell 

stretched by two opposite point loads as shown in Figure 

4. This example constitutes a difficult test for finite 

element formulations, which induce large displacements 

and large rotations, following previous literature (Brank, 

Peric and Damjanic, 1995), (Sansourand Bednarczyk, 

1995), (Chróścielewski, 1996), (Fontes Valente,et al, 

2003),(Kreja and Schmidt, 2006), (Caseiro,et al, 2013) to 

name but a few. The geometric properties are the length L 

= 5.175 in, the radius R = 4.953 in and the thickness h = 

0.094 in. The material is isotropic with E =10500 ksi and  

= 0.3125.  No boundary conditions are applied to the free 

ends of the shell. Due to the symmetry, only one octant of 

the shell is modeled using 20x32 elements (20 along the 

length and 32 along the periphery). 

 

 
Fig.4 Short open cylinder 

 
Fig. 5 Radial deflection at point A of isotropic cylinder 

 

 
Fig. 6 Radial deflection at point B of isotropic cylinder 

 

The load-deflection curves for the points A and B are 

presented in Figures 5 and 6 along with the reference 

solutions obtained in our earlier paper (Kreja and Schmidt, 

2006) using a large rotation (LRT56) model, 

(SansourandBednarczyk. 1995), (Chróścielewski, 1996), 

(Masud,et al,2000)and (Sze,et al, 2004). The present 

results are also in a quite good agreement with those of 

(LRT56-Kreja and Schmidt,2006), (Sansour and 

Bednarczyk,1995), and (Chróścielewski,1996), while the 

solution of (Masud,et al, 2000) differs especially in the 

snap-through region, which is best visible in the load-

deflection curve for point B. 

 

3.3Stretching of composite laminated short cylinders 

 

In this, the same previous example is considered but with 

laminated composite layers. The geometry and boundary 

conditions are same as shown in Figure 4. The material 

properties of each layer are E11 = 30500 ksi, E22 = 10500 

ksi, G12 = G13 = G23 = 4000 ksi and 12 = 0.3125. Here two 

different cases of stacking sequences of the composite 

shell are analyzed.  Due to the symmetry, only one octant 

of the shell is modeled using 20x32 elements (20 along the 

length and 32 along the periphery). 



M.N. Rao et al                                                                           International Journal of Current Engineering and Technology, Special Issue-2 (Feb 2014)                                                                                                         

 

 663 | International Conference on Advances in Mechanical Sciences 2014 

 

 
Fig. 7 Radial deflection at point A for (0°/90°) plies lay-up 

 

In the first simulation, the composite shell with fiber 

orientations (0°/90°) is analyzed. In Figure 7 the radial 

displacement at point A obtained from the present FE 

formulation is compared with reference solutions of 

(Masud,et al, 2000) and (Kreja and Schmidt, 2006), who 

use two large (LRT5, LRT56), and two moderate rotation 

(MRT5, MRT56) theories. The results of the present FE 

model (FOSD FRT) are in excellent agreement with those 

of the LRT56 model. The result of (Masud,et al, 2000) 

differs in the snap-through region, while the LRT5 model 

fails to predict the buckling phenomenon at all. As 

expected, the moderate rotation theories (see (Librescuand 

Schmidt, 1988), (Schmidt and Reddy, 1988), Palmerio, 

Reddy and Schmidt, 1990), (Kreja, Schmidt and Reddy, 

1997)) yield good results only in the range of moderate 

rotations. 

 In Figure 8 the radial displacement at points B and C 

obtained from the present FE formulation is compared 

with reference solutions of (Masud,et al, 2000), (LRT56-

Kreja and Schmidt, 2006). The results of the present FE 

model (FOSD FRT) are in excellent agreement with those 

of the LRT56 model. 

 

 
Fig. 8 Radial deflection at points B and C for (0°/90°) 

plies lay-up 

 

In the second case, the numerical investigation is 

performed for the composite laminated short cylinder with 

lay-up (90°/0°). Figure 9 shows the radial displacements at 

points A, B and C, respectively. In Figure 9 the present 

simulations by FOSD FRT agree very well with those of 

(LRT56-Kreja and Schmidt, 2006). 

 

 
Fig. 9 Radial deflection at pointsA, B and C for (90°/0°) 

plies lay-up 

 

3.3.1 Influence of lamina sequence 

 

Figure 10 shows the radial displacements at points A, B 

and C, respectively for different ply lay-ups (90°/0°) and 

(0°/90°). From Figure 10, it can be observed that the snap-

through load for stretching the composite laminated 

cylinder increases significantly, when the stacking 

sequence is changed from (0°/90°) to (90°/0°). 

 
 

Fig. 10 Radial deflection at points A, B and C for (90°/0°) 

plies lay-up 

 

In the third case, the numerical investigation is performed 

for the composite laminated short cylinders with lay-ups 

(45°/-45°) and (-45°/45°). Figure 11 shows the radial 

displacements at points A, B and C, respectively. 

From Figure 11, it is noticeable that the structure exhibits 

sudden buckling for lay-up (-45°/45°) and smooth snap-

through behavior for the lay-up (45°/-45°). The snap-

through load for stretching the composite laminated 

cylinder increases significantly by 8%, when the stacking 

sequence is changed from (45°/-45°) and (-45°/45°). 
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Fig. 11 Radial deflection at points A, B and C for (90°/0°) 

plies lay-up 

 

3.4Unstable behavior of shallow-roof structure 

 

The considered example is a well-known nonlinear 

benchmark problem of a hinged cylindrical shell under a 

central point load. This example first considered by (Sabir 

and Lock, 1972), (Horrigome and Bergan, 1972) and latter 

it was extensively analyzed in literature (Ramm, 1982), 

(Cho,et al, 1998), (Crisfield, 1981), (Alves de Sousa,et al, 

2006),(Pramin,et al, 2012) to name but a few. This 

example constitutes good test for finite element 

formulations, combining bending and membrane effects.   

The cylindrical shell is hinged along the longitudinal 

boundaries but unsupported along the curved edges. The 

geometry and boundary conditions for the model are 

presented in Figure 11.  The material is taken as elastic 

with E= 3102.75 N/mm
2
 and = 0.3. 

 

 
 

Fig. 12 Hinged cylindrical shell  

 
Fig. 13 Transverse deflection at point Aof hinged 

cylindrical shell 

 
Fig. 14 Transverse deflection at pointB of hinged 

cylindrical shell 

 

In this example, the snap-through and snap-back load -

displacements are analyzed. Due to the symmetry, only 

one quadrant of the shell is modeled using 8x8 elements. 

The results of the z- displacement of points A and B are 

presented in Fig. 10 and Fig. 11, as well as solutions from 

the other existing literature given by (Horrigome and 

Bergan, 1978), (Ramm, 1982), (Pramin,et al, 2012),  

(Caseiro,et al, 2013) for comparison purposes.  (Caseiro,et 

al, 2013) used 3D solid elements considering locking 

effects with subspace methodology. (Pramin,et al, 2012) 

used co-rotational 8-node solid element. Our FOSD FRT 

results agree very well with those of (Horrigomeand 

Bergan, 1978) and (Pramin,et al, 2012). 

 

Conclusions 

 

In this paper, nonlinear static analyses of a composite 

laminated plate strip subjected to uniform distributed load 

and stability analysis of an isotropic short cylinder and 

laminated cylindrical shellswith different stacking 

sequences and a hinged roof structure are simulated by 

FOSD FRT model. Additionally, influence of lamina 

sequence of pinched composite short cylinder also 

simulated by FOSD FRT model. The present simulations 

demonstrate the importance of the finite rotation models 

concerning a reliable consideration of nonlinearities.  
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