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Abstract 

  

The dynamic stability behavior of the square plate subjected to a uniform edge in-plane periodic load, consisting of a 

constant compressive and periodic load in one direction and a constant compressive load in the perpendicular direction 

is investigated for the simply supported boundary conditions with varying uniform constant compressive loads, in this 

paper. The energy method, by using a single term exact trigonometric admissible function to represent the lateral 

deflection, is employed to obtain the dynamic instability regions. Numerical results are presented in the non-dimensional 

form with the varying static load parameters and the static compressive load ratios in both the digital and analogue 

forms. The present results show excellent agreement when compared with that available in the literature. The effect of 

the static load parameters and the static compressive load ratios on the dynamic instability regions is brought out in the 

present work.  
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1. Introduction 

 
1
 The present day lightweight structures, subjected to 

dynamic loads, make it essential to determine the 

dynamically unstable regions for different structural 

members.  When a plate is subjected to periodic loads, it is 

a well known fact that for certain values of exciting 

frequencies the ordinary in-plane forced response will 

become dynamically unstable, leading to a violent 

vibration in the transverse direction. This is called as the 

dynamic instability phenomenon. 

 Prediction of the dynamic stability behavior of 

structural members subjected to periodic in-plane loads is 

an important input for the structural design engineers. The 

structural members, like plates are commonly used in 

many fields of engineering. Earlier studies on the dynamic 

stability of columns are briefly discussed (Timoshenko 

and Gere, 1961).  The theory and application of the 

dynamic stability behavior of structures have been 

exhaustively given in the classic work of Bolotin (Bolotin, 

1964). The first finite element (FE) studies on this topic 

for columns with various boundary conditions (Brown et 

al. 1968).  It is observed in this interesting study that when 

the first mode shapes of the free vibration and buckling are 

the same or nearly the same, which is generally satisfied 

for the many column boundary conditions, the dynamic 

stability regions, more or less remain the same, by proper 

                                                           
*Corresponding author: D.V. Ramana Reddy 

non-dimensionalization of the basic physical quantities in 

the problem involved.  However, the derivation of the 

proper nondimensional parameters is not given in the 

study and is taken intuitively (Brown et al. 1968). The thin 

plate finite element model to study the dynamic instability 

of rectangular plates studied in this work (Hutt and 

Salama, 1971).  Some recent studies in this topic for plates 

subjected to periodic loading can be seen in (Dey and 

Singha, 2006), (Ramachandran and Sarat Kumar, 2012). In 

a recent study (Rao et al, 2008), it is shown that these 

nondimensional parameters used in (Brown et al. 1968), 

can be derived rigorously and demonstrated the existence 

of the unique dynamic stability curves for many 

commonly used structural members, provided the 

requirement on the mode shapes (Brown et al. 1968) is 

satisfied. It may be emphasized here that, these mode 

shapes, though similar as mentioned earlier (Brown et al. 

1968), differ by small extent depending on the boundary 

conditions and the error involved in the instability 

boundaries is tolerable small, for the engineering purposes, 

as has already been demonstrated by (Rao et al, 2011), 

based on the consideration of the Euclidean norm. 

 In the present study, the dynamic stability behavior of 

the square plate subjected to an edge uniform in-plane 

periodic load, consisting of a constant compressive and 

periodic loads in one direction and a constant compressive 

load in the perpendicular direction, is investigated for the 

plate with the simply supported boundary conditions with 

varying uniform constant compressive load ratios.  In this 
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work an energy method is used to develop a simple closed 

form solution to predict the dynamic instability behavior 

of the simply supported square plate, using exact 

trigonometric admissible function to represent the 

transverse deflection, as given by (Leissa 1965).  

 Elegant, simple and exact closed form analytical 

solution to predict the dynamic stability regions of the 

square plate subjected to the aforementioned loads are 

provided in this paper. It is to be noted here, that the 

prediction of dynamic stability behavior of the plate with 

these applied loads is a new contribution, to obtain the 

behavior of dynamic stability regions of square plate.  In 

the following section, a simple formula to predict the 

dynamic instability behavior of the simply supported 

square plate subjected to the loading condition, mentioned 

earlier is presented.  

 

2. Dynamic Stability Equation 

 

When the plate is, subjected to a uniform edge in-plane 

periodic load in the x- direction and constant compressive 

load in the y- direction, as shown in Fig.1, the periodic 

load Nx(t) and Ny,  which are defined as, 
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crttsx NttNNtN  coscos)(   (1)              

and  

 
xy NN                  (2) 

where α is the static load factor 














cr

s

N

N
,  β is the dynamic 

load factor















cr

t

N

N
, Ns is the constant compressive load, 

Nt is the time dependent load, Ncr is the buckling (critical) 

load, θ is the applied radian frequency, tt indicates time 

and 
y

x

N

N
 . 

 Fig.1 A simply supported plate under the applied 

compressive load system 

 

For a rectangular plate of length A and breadth B with 

constant thickness t, the strain energy U, the work done by 

the external compressive edge loads W and the kinetic 

energy T are given by 
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Where w is the lateral displacement, ρ is the mass density, 

ω is the radian frequency of the plate, Nx (t) and Ny are the 

edge uniform periodic and constant compressive loads in 

the Cartesian co-ordinate system, and D is the plate 

flexural rigidity given by  
 2

3

112 


Et
D , E is the young’s 

modulus and ν is the Poisson ratio. 

The admissible transverse displacement w in terms of m 

and n, which are the number of half-waves in the x and y 

directions respectively, is assumed to be of the form, 
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Where a is the undetermined coefficient. The 

displacement distribution assumed for w is exact for the 

simply supported boundary conditions, for both the 

vibration and buckling problems.  

The total potential energy П of the plate is given by 

  TWU                                       (8)  
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Where U, T and W are the strain energy, kinetic energy 

and potential due to the work respectively. 

In the Rayleigh-Ritz method, the total potential energy is 

minimized with respect to the undetermined coefficient a, 

as 
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Which yields, after integration and simplification of 

Eq.(10) by neglecting the term for W , an expression for 

the frequency parameter, f  (=
D

At 42
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Similarly, by neglecting the kinetic energy term T in 

Eq.(10), the expression for the buckling load parameter, λb 
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 , where Nxcr is the critical load, defined with the 

load in the x- direction, is obtained as 
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Substituting, the energies U and T and potential W in Eq. 

(10), after simplification, using the Eqs.(11) and Eq.(12) 

for, the dynamic stability equation in the non-dimensional 

form, as 
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For a square plate (A/B =1), for the first mode of buckling 

and vibration (m = n = 1) and γ=0 for uni-axial load, Eq. 

(13) becomes 
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Defining,

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  and after simplification, Eq. (14) 
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Equation (15) can be treated as the dynamic stability 

solution containing the physically identifiable non-

dimensional parameters.  

Substituting, the energies U and T and potential W in Eq. 

(10), after simplification, using the Eqs.(11) and Eq.(12) 

for biaxial load, and after simplification, the dynamic 

stability equation in the non-dimensional form, as 
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Equation (16) can be treated as the dynamic stability 

solution for the afore mentioned loading condition, 

containing the physically identifiable non-dimensional 

parameters. 

  

3. Results and Discussion 

 

By using Eq. (15), the dynamic stability of square plate 

with uni axial load and using Eq.(16) the effect of the in-

plane loads considered, in the present study, as shown in 

Fig.1, is brought out. The dynamic instability boundaries 

1 and 2, between which it is dynamically unstable are 

given with varying β and for  = 0.0, 0.25 and 0.5 given in 

Table 1. In Table.1, the variation of Ω1 and Ω2 for the 

value of β (dynamic load factor) varying from 0 to 1.0 for 

the simply supported square plate with uniform uniaxial 

in-plane periodic load i.e. (γ = 0.0) for α = 0.0, 0.25 and 

0.5 are presented. The dynamic stability regions of the 

square plate are given in (Ramachandra and Sarat Kumar, 

2012) and the present results for γ = 0.0 (Uniform uniaxial 

periodic load) are deduced from the dynamic stability 

formulae Eq.(15), derived here, for  = 0.0 and 0.6 as is 

given in Tables 2 and 3 respectively. The excellent 

agreement between the two results strongly indicates the 

usefulness of the simple dynamic stability formula, 

developed in the present work.  

 

Table 1: Variation of 1 and 2 for square plate   

subjected to uniaxial compression without static 

compressive load (γ= 0.0) 

 

β 
α = 0.0 α = 0.25 α = 0.5 

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

0.0 2.0000 2.0000 1.7320 1.7320 1.4142 1.4142 

0.1 1.9493 2.0493 1.6733 1.7888 1.3416 1.4832 

0.2 1.8973 2.0976 1.6124 1.8439 1.2649 1.5491 

0.3 1.8473 2.1447 1.5491 1.8973 1.1832 1.6124 

0.4 1.7888 2.1908 1.4832 1.9493 1.0954 1.6733 

0.5 1.7320 2.2360 1.4142 2.0000 1.0000 1.7320 

0.6 1.6733 2.2803 1.3416 2.0493 0.8944 1.7888 

0.7 1.6124 2.3237 1.2649 2.0976 0.7745 1.8439 

0.8 1.5491 2.3664 1.1832 2.1447 0.6324 1.8973 

0.9 1.4832 2.4083 1.0954 2.1908 0.4472 1.9493 

1.0 1.4142 2.4493 1.0000 2.2360 0.0000 2.0000 

 

Table 2: Variation of 1 and 2 for square plate Subjected 

to uniaxial periodic load for = 0.0 

 

β 
Present study 

Ramachandra & Sarat 

Kumar* 

Ω1 Ω2 Ω1 Ω2 

0.0 39.4801 39.4801 39.09 39.09 

0.1 38.4790 40.4531 38.63 40.00 

0.2 37.4527 41.4066 37.27 40.91 

0.3 36.4657 42.3363 36.59 42.04 

0.4 35.3109 43.2463 35.22 42.73 

0.5 34.1890 44.1386 34.54 43.64 

0.6 33.0309 45.0131 32.72 44.54 

0.7 31.8287 45.8698 31.81 45.45 

0.8 30.5792 46.7127 30.68 46.36 

0.9 29.2783 47.5398 29.45 46.81 

1.0 27.9163 48.3491 27.27 47.72 

     
*
Values are read from the graph  

 

Table 3: Variation of 1 and 2 for square plate subjected 

to uniaxial periodic load for α = 0.6 

 

β 
Present Formula 

Ramachandra & 

Sarat Kumar* 

Ω1 Ω2 Ω1 Ω2 

0.0 24.9693 24.9693 25.03 25.03 

0.05 24.1755 25.7370 24.18 25.64 

0.1 23.3563 26.4831 23.45 26.36 

0.15 22.5055 27.2096 22.48 27.09 

0.2 21.6231 27.9163 21.51 27.93 

0.25 20.7033 28.6052 20.79 28.54 

0.3 19.7393 29.2783 19.81 29.27 

  
*
Values are read from the graph  

 

Table 4: Variation of 1 and 2 for square plate subjected 

to applied compressive load system with static 

compressive load ratio (γ = 0.25) 

 

β 
α = 0.0 α = 0.25 α = 0.5 

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 
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0.0 1.8708 1.8708 1.7320 1.7320 1.5811 1.5811 

0.1 1.8439 1.8973 1.7029 1.7608 1.5491 1.6124 

0.2 1.8165 1.9235 1.6733 1.7888 1.5165 1.6431 

0.3 1.7829 1.94938 1.6431 1.8165 1.4832 1.6733 

0.4 1.7606 1.9748 1.6124 1.8439 1.4491 1.7029 

0.5 1.732 2.0000 1.5811 1.8708 1.4142 1.732 

0.6 1.7029 2.0248 1.5491 1.8973 1.3784 1.7606 

0.7 1.6733 2.0493 1.5165 1.9235 1.3416 1.7888 

0.8 1.6431 2.0736 1.4832 1.9493 1.3038 1.8165 

0.9 1.6124 2.0976 1.4491 1.9748 1.2649 1.8439 

1.0 1.5811 2.1213 1.4142 2.0000 1.2247 1.8708 

 

Table 5: Variation of 1 and 2 for square plate subjected 

to applied compressive load system with static 

compressive load ratio (γ = 0.5) 

 

β 
 = 0.0  = 0.25  = 0.5 

1 2 1 2 1 2 

0.0 1.4142 1.4142 1.2247 1.2247 1.0000 1.0000 

0.1 1.3784 1.4491 1.1832 1.2649 0.9486 1.0487 

0.2 1.3416 1.4832 1.1401 1.3038 0.8944 1.0954 

0.3 1.3038 1.5165 1.0954 1.3416 0.8366 1.1401 

0.4 1.2649 1.5491 1.0488 1.3784 0.7745 1.1832 

0.5 1.2247 1.5811 1.0000 1.4142 0.7071 1.2247 

0.6 1.1832 1.6124 0.9486 1.4491 0.6324 1.2648 

0.7 1.1401 1.6431 0.8944 1.4832 0.5477 1.3038 

0.8 1.0954 1.6733 0.8366 1.5165 0.4472 1.3416 

0.9 1.0488 1.7029 0.7745 1.5491 0.3162 1.3784 

1.0 1.0000 1.732 0.7071 1.5811 0.0000 1.4142 

 

Table 6: Variation of 1 and 2 for square plate subjected 

to applied compressive load system with static 

compressive load ratio (γ = 1.0) 

 

β 
α = 0.0 α = 0.25 α = 0.5 

Ω1 Ω2 Ω1 Ω2 Ω1 Ω2 

0.0 1.8708 1.8708 1.7320 1.7320 1.5811 1.5811 

0.1 1.8439 1.8973 1.7029 1.7608 1.5491 1.6124 

0.2 1.8165 1.9235 1.6733 1.7888 1.5165 1.6431 

0.3 1.7829 1.94938 1.6431 1.8165 1.4832 1.6733 

0.4 1.7606 1.9748 1.6124 1.8439 1.4491 1.7029 

0.5 1.732 2.0000 1.5811 1.8708 1.4142 1.732 

0.6 1.7029 2.0248 1.5491 1.8973 1.3784 1.7606 

0.7 1.6733 2.0493 1.5165 1.9235 1.3416 1.7888 

0.8 1.6431 2.0736 1.4832 1.9493 1.3038 1.8165 

0.9 1.6124 2.0976 1.4491 1.9748 1.2649 1.8439 

1.0 1.5811 2.1213 1.4142 2.0000 1.2247 1.8708 

 

 
Fig. 2 Dynamic stability regions for square plate subjected 

to uniaxial compression without static compressive load 

(γ= 0.0) 

 
Fig. 3 Dynamic stability curves for square plate subjected 

to the applied compressive load system with static 

compressive load ratio (γ=0.25) 

 

 
Fig. 4 Dynamic stability curves for square plate subjected 

to the applied compressive load system with static 

compressive load rati (γ= 0.5) 

 

 
Fig. 5 Dynamic stability curves for square plate subjected 

to the applied compressive load system with static 

compressive load ratio (γ= 1.0) 

 

In Tables 4 to 6, the dynamic stability regions for the 

uniform biaxial load for γ = 0.25, 0.5 and 1.0 for α = 0.0, 

0.25 and 0.5 are presented. Figures 3 to 5 shows the 

stability boundaries given in tables 4 to 6 respectively. 

One can observe that, by increasing of the static 

compressive load parameter α, the width of the dynamic 

instability regions increase and by increasing the static 
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compressive load ratio (γ) the regions of the dynamic 

instability increases and shifts towards the vertical axis.  

    

4. Conclusions 

 

Accurate closed form solutions are obtained to predict the 

dynamic stability regions of the simply supported square 

plate subjected to uniform in-plane compressive periodic 

load with a constant compressive load component in one 

direction and a static compressive load in the 

perpendicular direction. Simple one term standard 

trigonometric admissible function that satisfies all the 

boundary conditions is used to obtain the solution 

employing the energy method. It is noted here, by 

increasing the static load factor α, the regions of instability 

increase and by increasing the static compressive load 

ratio (γ) the dynamic instability regions increases and shift 

towards the vertical axis using physically recognizable 

dynamic load factor (β).  
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