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Abstract 

  

Large amplitude vibration phenomenon of structural members like short (Timoshenko) beams requires the values of the 

Young’s modulus and shear (rigidity) modulus. Though the shear modulus can be obtained from the Young’s modulus, it 

is necessary to know the values of the Poisson ratio for the isotropic beams.   The value of the Poisson ratio lies in a 

band for the isotropic materials.   The generally used Poisson ratio for isotropic materials is in between 0.25 to 0.33 and 

most often is arbitrarily used in the analysis.  The main aim of this paper is to study the effect of the variation of Poisson 

ratio with reference to the large amplitude free vibrations of beams, which is the simplest structural element.   The 

coupled displacement field method is used in the analysis because of its inherent simplicity; where in the number of 

undetermined coefficients are reduced by a factor two in the admissible functions assumed for the lateral deflection and 

the total rotation. The present paper, though aimed at demonstrating the effect of Poisson ratio, on the large amplitude 

vibrations of Timoshenko beams, where in the effect of the transverse shear has to be considered, and a brief on method 

of analysis (coupled displacement formulation) is provided for the sake of completeness.  For isotropic materials, the 

effect of transverse shear is linearly dependent on the shear modulus, which in turn is related to the Young’s modulus 

through the Poisson ratio.   The effect of taking a specific value of the Poisson ratio in the analysis is discussed in detail. 

The numerical results are obtained for several values of the Poisson ratio varying from 0 to 0.5 in steps of 0.1.  the 

numerical results show that the values of the Poisson ratio taken affects the ratios of the nonlinear to linear radian 

frequencies, for several amplitude ratios considered;  the effect is seen to be considerable for higher amplitude and 

slenderness ratios.  
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1. Introduction 

 
1
 The classic work of Woinowsky – Kriegeron the large 

amplitude vibrations of  slender beams inspired many a 

researcher to develop simple continuum formulations and 

finite  element formulations with some simplifying 

assumptions. However, large amplitude vibrations of shear 

flexible beams have not been received much attention till 

recently except in the work of Rao et al., who have used a 

simplified finite element formulation.  

 Introduction of the effects of shear deformation and 

rotary inertia in the formulation yields coupled nonlinear 

differential equations.  Further the oscillations being non-

harmonic with two independent variables, namely, the 

lateral deflection and the total rotation, solution of such 

complicated equations by assuming both the spatial and 

temporal distribution is rather difficult. On the other hand, 

if the two variables appearing in the formulation are 

coupled to make the final equation a single nonlinear 

equation, then the solution becomes simpler. The reason 
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being, in this system of single nonlinear equation, 

assuming suitable admissible functions in space eliminate 

the space variable and the resulting temporal equation can 

be solved using any standard method.   This is the main 

advantage of the coupled displacement method. The 

authors have successfully applied this method to evaluate 

the large amplitude vibrations behavior of different 

structural members including beam.  For the shear flexible 

beams,  the value of the shear modulus is required.   This 

value is evaluated from the Young’s modulus which 

introduces the Poisson ratio.   This ratio, for most of the 

isotropic metallic materials,  varies between 0.25 to 0.33 

and hence, a study on the variation of the Poisson ratio on 

the large amplitude vibrations of Timoshenko beams is 

necessary to find out the sensitivity of this ratio on the 

final results obtained in terms of the nonlinear to linear 

radian frequencies.   Emphasis is given here in the 

fundamental mode of vibration as this requires minimum 

energy to get excited.   In the next section the coupled 

displacement field method to obtain the ratio of nonlinear 

to the linear radian frequencies, which depends on the 

Poisson ratio used, for several maximum amplitude ratios. 
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2. Coupled Displacement Fields  

 

In this method, an admissible function for the lateral 

deflection w that satisfies all the essential boundary 

conditions and symmetric condition, in the beam domain 

is assumed.  The distribution for the total rotation  is 

derived from the coupling equation .   The w distribution 

along the length of the beam is assumed as 

 

w= a sin 
L

x
                        (1)                                                                                                               

 

where ‘a’ is the central lateral deflection of the beam. 

The coupling equation is taken , as 

 

dx

dw
= -  + 

kGA

EI
”                        (2) 

Substituting the function w in equation (2), the 

displacement field for ‘ ’, is obtained after solving the 

above differential equation, as 

=  a cos 
L

x
            (3) 
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It may be noted here that because of the coupled field 

method ‘ ’, the total rotation field distribution, contains 

the same undetermined coefficient ‘a’  as in the w 

distribution.  

 

3. Large Amplitude Vibrations – Energy Method 

 

Large amplitude vibrations can be studied , once the 

coupled displacement field for the total rotation ‘’,  for an 

assumed ‘w’ distribution is evaluated using the principle 

of conservation of total energy at any instant of time, 

which states that 

 

U + T + W=Constant                   (5)                                                                                                    

 

The expression for U, T and W are given by 
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where U is the strain energy, T is the kinetic energy, W is 

the work done by the tension developed because of large 

amplitudes (deflections), ‘’ is the mass density, ‘A’ is the 

area of cross - section, ‘I’ is the area moment of inertia, Ta 

is the tension developed in the beam because of large 

deflections, and ( 
·
 ) denotes differentiation with respect to 

time. 

Ta is evaluated, following Woinowsky – Krieger, as 

 

Ta =  






L

o

dx
dx

dw

Lr

EI
2

22
                  (9) 

where ‘r’ is the radius of gyration. 

 

It is to be noted here that ‘w’ in Eq. (9) does not contain 

shear flexible terms, and Ta is evaluated in terms of 

nondimensional amplitude q (= a/r). 

 Substituting the expressions for w and θ (obtained 

from the coupling equation), the expressions for U, T and 

W are evaluated and after simplification the temporal 

equation in terms of the nondimensional amplitude is 

obtained, as 
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In Eqs. (11) and (12) G can be expressed in terms of E 

from the standard relation, 

  G = 
)1(2 

E
                (13) 

where   is the Poisson ratio and β (= L/r) is the 

slenderness ratio of the beam. 

    From Eq. (10), following the procedure given in Ref., 

and applying the harmonic balance method, the ratios of 

the nonlinear to the linear radian frequencies can be 

obtained, as 
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For very large ,  i.e., for slender beams, where the  shear 

deformation and rotary inertia  can be neglected, Eq. (14) 

becomes  
2
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which is a standard result in the case of a clamped-

clamped beam, a single term trigonometric admissible 

function for      that satisfies the required boundary 

conditions is taken as  
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Table1   NL / L   Values for the Poisson’s ratio of 0.3 for Hinged-Hinged beam 

 

am/r 

3.0  


 

25 50 100 
  

Present Study 

FEM 

[7] 

DNI 

[3] 

Present 

Study 

FEM 

[7] 

DNI 

[3] 

Present 

Study 

FEM 

[7] 

DNI 

[3] 

 

 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.2 1.0039 - 1.0039 1.0038 - 1.0038 1.0038 - 1.0038 1.0037 

0.4 1.0156 1.0156 1.0156 1.0151 1.0150 1.0151 1.0149 1.0149 1.0149 1.0149 

0.6 1.0348 - 1.0347 1.0336 - 1.0335 1.0333 - 1.0332 1.0332 

0.8 1.0611 1.0605 1.0608 1.0590 1.0585 1.0588 1.0585 1.0585 1.0582 1.0583 

1.0 1.0940 1.0925 1.0933 1.0905 1.0897 1.0902 1.0900 1.089 1.8940 1.0897 

2.0 1.3368 1.3213 1.3313 1.3264 1.3142 1.3212 1.3237 1.3125 1.3186 1.3229 

3.0 1.6645 1.6146 1.6501 1.6457 1.6052 1.6318 1.6409 1.6257 1.6272 1.6394 

4.0 2.0366 - 2.0116 2.0092 - 1.9850 2.0023 - 1.9783 2.0000 

5.0 2.4328 - 2.3968 2.3969 - 2.3619 2.3879 - 2.3531 2.3848 

 

Table 2   NL / L Values for the Values of Poisson’s ratios of 0.4 and 0.5 for Hinged-Hinged beam 

 

r

am

 

  

0.4 0.5 


 


 

25 50 100   

 

25 50 100   
 

0.0 1 1 1 1 1 1 1 1 

0.2 1.0039 1.0038 1.0038 1.0037 1.0040 1.0038 1.0038 1.0037 

0.4 1.0157 1.0151 1.0149 1.0149 1.0157 1.0151 1.0149 1.0149 

0.6 1.0349 1.0336 1.0333 1.0332 1.0351 1.0337 1.0333 1.0332 

0.8 1.0613 1.0591 1.0585 1.0583 1.0615 1.0591 1.0585 1.0583 

1.0 1.0943 1.0909 1.0900 1.0897 1.0946 1.0910 1.0900 1.0897 

2.0 1.3378 1.3266 1.3238 1.3229 1.3389 1.3269 1.3239 1.3229 

3.0 1.6664 1.6462 1.6411 1.6394 1.6684 1.6467 1.6412 1.6394 

4.0 2.0394 2.0099 2.0025 2.0000 2.0422 2.0106 2.0027 2.0000 

5.0 2.4364 2.3979 2.3881 2.3849 2.4401 2.3988 2.3883 2.3849 

 

and by following the similar procedure as discussed  for 

hinged-hinged beam the ratios of the nonlinear to the 

linear radian frequencies can be obtained for the clamped-

clamped beam, as 
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4. Numerical Results and Discussion 

 

Using the coupled displacement formulation, the large 

amplitude behaviour of a uniform shear flexible hinged 

beam is obtained in terms of NL / L  (ratios of  nonlinear 

to the linear radian frequency) for various am / r 

(maximum amplitude ratios) , L/r (slenderness ratios) and 

Poisson ratio   .  The beam considered has axially 

immovable ends (Fig.1). 

 
 

Fig. 1. A Shear Flexible Hinged- Hinged Beam 

Undergoing Large Deflections 

 

The present  results in terms of the ratios of the  nonlinear 

to the linear radian frequencies  are presented in Table 1  
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Table3   NL / L   Values for the Poisson’s  ratio of 0.3 for Clamped-Clamped beam 

 

am/r 

3.0  


 

25 50 100 
  

Present Study 

FEM 

[7] 

DNI 

[3] 

Present 

Study 

FEM 

[7] 

DNI 

[3] 

Present 

Study 

FEM 

[7] 

DNI 

[3] 

 

 

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

0.2 1.0011 - 1.0011 1.0010 - 1.0010 1.0009 - 1.0009 1.0009 

0.4 1.0045 1.0390 1.0045 1.0039 1.0036 1.0039 1.0038 1.0035 1.0038 1.0037 

0.6 1.0100 - 1.0100 1.0088 - 1.0088 1.0085 - 1.0085 1.0084 

0.8 1.0178 1.0153 1.0178 1.0156 1.0142 1.0156 1.0151 1.0140 1.0151 1.0149 

1.0 1.0277 1.0238 1.0276 1.0243 1.0228 1.0242 1.0235 1.0218 1.0234 1.0232 

2.0 1.1065 1.0895 1.1058 1.0940 1.0800 1.0933 1.0908 1.0834 1.0902 1.0897 

3.0 1.2268 1.1855 1.2239 1.2011 1.1771 1.1987 1.1946 1.1759 1.1924 1.1924 

4.0 1.3776 - 1.3711 1.3368 - 1.3313 1.3264 - 1.3212 1.3229 

5.0 1.5501 - 1.5389 1.4932 - 1.4836 1.4786 - 1.4694 1.4737 

 

Table 4   NL / L Values for the Values of Poisson’s ratios of 0.4 and 0.5 for Clamped-Clamped beam 

 

r

am

 

  

0.4 0.5 


 


 

25 50 100   

 

25 50 100   
 

0.0 1 1 1 1 1 1 1 1 

0.2 1.0011 1.0010 1.0010 1.0010 1.0011 1.0010 1.0010 1.0010 

0.4 1.0045 1.0039 1.0038 1.0037 1.0046 1.0039 1.0038 1.0037 

0.6 1.0102 1.0089 1.0085 1.0084 1.0103 1.0089 1.0085 1.0084 

0.8 1.0180 1.0157 1.0151 1.0149 1.0182 1.0157 1.0151 1.0149 

1.0 1.0280 1.0244 1.0235 1.0232 1.0284 1.0245 1.0235 1.0232 

2.0 1.1078 1.0944 1.0909 1.0898 1.1091 1.0945 1.0910 1.0898 

3.0 1.2293 1.2019 1.1948 1.1925 1.2319 1.2023 1.1950 1.1925 

4.0 1.3809 1.3381 1.3267 1.3230 1.3856 1.3387 1.3269 1.3230 

5.0 1.5556 1.4950 1.4790 1.4739 1.5613 1.4958 1.4794 1.4739 

 

and Table3 for the Poisson’s ratio of  0.3.  For the sake of 

comparison and validation of the proposed method, the 

same results obtained by the finite element method (FEM) 

and by using the direct numerical integration method 

(DNI) are included in the same Table 1 and Table3  for the 

commonly used  Poisson’s ratio of 0.3.   The present 

results in terms of NL / L are presented in Table 2  and 

Table4 for the value of the Poisson’s ratio  of 0.4 and 0.5.  

        From the results presented to investigate the effect of 

the Poisson’s ratio on the nonlinear vibrations of isotopic, 

uniform, shear flexible and homogeneous beams with 

axially immovable ends the following broad observations 

can be made: 

 The effect of the Poisson’s ratio is negligible for 

lower amplitude ratios and is considerable for higher 

amplitude ratios of the vibrating beam. 

 The effect of the Poisson’s ratio for high slenderness 

ratios of the beam is negligible and for the smaller 

slenderness ratios is considerable. 

 The effect of the increasing Poisson’s ratio, from 0.3 

to 0.5, on the nonlinear vibrations is considerable. 

 Nonlinearities are more predominant in case of 

hinged-hinged beam when compared to clamped –

clamped beam at higher amplitude ratios. 

 

 

 

 

L/2

aT

x

L

Deformed position 

aT

cbm=b

Fig. 2.  A shear flexible clamped-Clamped beam 

undergoing large deflections. 
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5.  Conclusions 

 

The effect of the variation of the Poisson’s ratio, with 

respect to the nonlinear (large amplitude) vibrations is 

studied  using the coupled displacement field formulation 

of a uniform shear flexible hinged beams, with the ends of 

the beam are taken as axially immovable. This classical 

problem is chosen as a demonstration problem, to show 

the effect of variation of the Poisson’s ratio on the 

nonlinear vibrations.  Though the theoretical bounds of the 

Poisson’s ratio are -1 and 0.5, the variation of the 

Poisson’s  ratio considered in the present study is 0.0 to 

0.5, as a negative Poisson’s ratio is not applicable for 

isotropic shear flexible beams. 
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