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Abstract 

  

This paper studies a replacement policy (N1, N2) for a series repairable system consisting of two non-identical 

components and one repair man. It is assumed that each component after repair in the system is not ‘as good as new‘ 

and the successive working times form a decreasing  -series process while, the successive repair time’s form an 

increasing geometric process and both the processes are exposing to exponential failure law. Under this assumption by 

using a monotone process repair model, a replacement policy (N1, N2) based on the number of failures of component 1 

and component 2 respectively is considered. An explicit expression for the long run expected cost rate is derived and the 

corresponding optimal replacement policy (N*1, N*2) is obtained such that the long run expected cost per unit time is 

minimized. Finally, numerical results are provided to highlight the obtained theoretical results. Numerical results are 

also exhibited by the graphically. 

 

Keywords: Long-run Average, Cost Rate, Geometric Process, α-Process, Renewal Theorem and Mean Time to Failure 

(MTTF).     

 

 

1. Introduction 

 
1
 In the earlier stages, much research work has been carried 

out in the fields of maintenance problems based on the 

assumption that the system after repair is „as good as new‟. 

This model is referred to as perfect repair model. Barlow 

and Hunter (1959) introduced a minimal repair model in 

which a minimal repair does not change the age of the 

system.  Thereafter, Barlow and Proschan (1983) 

developed an imperfect repair model under which a repair 

with probability p as perfect repair and with probability 1-

p as minimal repair. Many others worked in this direction 

and developed corresponding optimal replacement polices 

e.g. Park (1979), Kijima (1989). 

   However in practice, due to the ageing and 

accumulated wearing, many systems are deteriorating. For 

a deteriorating system, it is reasonable to assume that the 

successive working times are stochastically non-increasing 

while the consecutive repair times after failures are 

stochastically non-decreasing. Thus a monotone process 

model should be a natural model for a deteriorating 

system. Ultimately, such systems can‟t work any longer. 

Neither can it be repaired any more. 

                                                           
*Corresponding author B. Venkata Ramudu is working as Assistant 

Professor of  Statistics;  A. Janikiram as Lecturer in Statistics and Y. 

Krishna Reddy is working as Director 

To model such simple repairable deteriorating system Lam 

(1988 a, 1988 b) first introduced a geometric process 

repair model under the assumptions that the system after 

repair is not „as good as new‟ and the successive working 

times {X
n
, n=1, 2,….} of a system form a non increasing 

geometric process while the consecutive repair times {Y
n
, 

n=1, 2,….} form a non – decreasing geometric process. 

Under these assumptions, he studied two kinds of 

replacement polices -one based on the working age T of 

the system and other based on the number of failures N of 

the system. He derived explicit expression for the long-

run- average cost per unit time and also determined 

corresponding optimal replacement policy N such that the 

long-run-expected average cost per unit time is minimized.  

 Zhang developed a bivariate replacement policy (T, N) 

to generalize Lam‟s work. Under this policy, the system is 

replaced when the working age of the system reaches T 

and the number of failures of the system reaches N, 

whichever occurs first. He derived an explicit expression 

for the long-run average cost per unit time and 

corresponding optimal replacement policy (T
*
, N

*
) was 

determined analytically or numerically. Other replacement 

policies under geometric process repair model were 

reported by Zhang (2002, 1999,2004), Leung , Stadje and 

Zuckerman(1990)], Stanley (1983), Lam and Zhang(1996) 

and Lam ,Y (2003). However, the above various 

researches are related to the simple repairable system. For 
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multi-component systems, Zhang and Wang (2007) first 

studied a two-component series repairable system under 

the geometric process repair model. When the working 

time of component 1 in the system follows the exponential 

distribution while that of component 2 and the repair times 

of both components follow general distributions, they 

derived some reliability indices of the system. Lam and 

Zhang(2003) studied a similar model, more reliability 

indices of the system are obtained by using the Laplace-

transform technique. Zhang (1999) applied the geometric 

process repair model to a two-component cold standby 

repairable system with one repairman. He also assumed 

that each component after repair is not „„as good as new‟‟. 

Under this assumption, by using a geometric process, he 

studied a replacement policy N based on the number of 

repairs of component 1. The problem is to determine an 

optimal replacement policy N* such that the long-run 

expected reward per unit time is maximized.  

 The above various research works are related to one 

component repairable system. However on practical 

application, the standby techniques are usually used for 

improving the reliability or raising the availability of the 

system. Zhang and Wang (2007) developed a bivariate  

variable optimal replacement policy ( T,N)  for a two-

identical component cold standby repairable system with 

one repairman, to generalize Zhang, Y.L (1994,1999) 

work. They derived an explicit expression for the long-

run-average cost per unit time and determined 

corresponding optimal replacement policy (T, N) *  such 

that the long-run-average cost per unit time is minimized. 

The geometric process has been extensively used and 

applied to the reliability indices and maintenance models 

for a deteriorating system, including one-component 

system and two-component series, parallel system and 

standby systems. In this direction much research work 

carried out by Wang and Zhang (2006) and Zhang et.al 

(2007). 

 Wang and Zhang (2007) discussed an optimal 

replacement policy for a two-component series system 

using geometric process repair. They assumed each 

component after repair in the system is not „as good as 

new‟. Under this assumption, by using geometric process 

repair model,  a replacement policy (M, N) based on 

number of failure of component 1 and component 2 was 

studied They derived an explicit expression for the long-

run-average cost per unit time and determined 

corresponding optimal replacement policy such that the 

long-run average cost per unit time is minimized. Zhang 

and Wang (2007) generalize the above work and study an 

optimal replacement policy (M 1

* , M 2

* …, M*
N

) for 

multi component series system assuming geometric 

process replacement model. However the geometric 

process is more useful model for deteriorating system, 

Braun et al introduced an alternative model, the  -series 

process ,which contributes these characteristics.  

 Furthermore Braun et.al (2005) explained the 

increasing geometric process grows at most 

logarithmically in time, while the decreasing geometric 

process is almost certain to have a time of explosion. The 

 -series process grows either as a polynomial in time or 

exponential in time. It also noted that the geometric 

process doesn‟t satisfy a central limit theorem, while the 

 -series process does. Braun et al (2005) also presented 

that both the increasing geometric process and the  -

series process have a finite first moment under certain 

general conditions. However the decreasing geometric 

process usually has an infinite first moment under certain 

conditions. Thus the decreasing  -series process may be 

more appropriate for modeling system working times 

while the increasing geometric process is more suitable for 

modeling repair times of the system.  

 Based on this understanding, in this paper, for studying 

a deteriorating system, it is assumed that the successive 

operating times of each component form a decreasing α-

process while the consecutive repair times form an 

increasing geometric process and each component after 

repair is not „as good as new‟. Under these assumptions, 

we study a repair replacement policy (N1, N2) based on the 

number of failures of the component 1 and component 2. 

An explicit expression for the long –run average cost per 

unit time is derived and corresponding optimal 

replacement policy (N1*, N2*) is determined such that the 

long –run average cost per unit time is minimum. Finally, 

numerical results are provided to highlight the theoretical 

results.  

 

2. The Model 
 

A two dissimilar components series repairable system with 

one repairman is studied under the following assumptions. 

1. Assume that, at the beginning, two components in the 

system are both new and both the components in the 

working state as the system is a series system. 

2. Assu+0me that one component fails the system break 

down, and the failed component will be immediately 

repaired. 

3. It is assumed that two components shut off each other 

and each component after repair is not “as good as 

new”. 

4. The time interval between the completion of  n th  

repair and (n-1)
th

 repair, i on component i=1,2 is 

called the n th  cycle of component i, where n=1,2 and 

i=1,2.  

5. Assume that {Xn
(i)

}  is the operating time for 

component i after (n-1) th  repair and { n
iY )( }  in the 

repair time after  n th  repair of component i, for i=1,2    

= 1,2.and n=1,2,3… 

6.  Let   i

nX  be the working time after  (n-1) th  repair of 

component i, where i=1,2 then the sequence,  i

nX  

n=1,2,…. form a non increasing α-process with 

parameters λ>0. 

7. Let   i
nY  be the repair time after  n th  repair of 

component i, where i=1,2 then the sequence,  i
nY  

n=1,2,…. form an increasing geometric process with 

parameters µ>0. 
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8. Let   y)(b G and x)(kF
1-n

i

(i)

n

(i)

n
i  be the distribution 

function of  Xn
(i)

 and n
iY )(  respectively, for i=1,2 and 

n=1,2,…. where αi > 0 and 0 < bi < 1. 

9. ,.....3,2,1.2,1)()(
1

)()( 


kandifor
a

YEand
k

XE
k

i

n

i

k




( ) (i)

1 1( )  and   E(Y ) ,  for 1,2.iE X i    . 

10. Let { 
)(i

nY } be the repair time after n
th

 failure. Then 

sequence {
)(i

nY  , n=1,2,…..}Form a non-decreasing 

GP with parameters µ>0.It means that the repair time 

is negligible. 

11. A sequence { Xn
(i)

  n=1,2,….} and { 
)(i

nY  n=1,2,…..} 

are independent,  where n=1,2,3… and i=1,2. 

12. Assume that the distributions of { Xn
(i)

  } and { n
iY )(  } 

be F (Xn
(i)

) and G (
)(i

nY ) respectively and Xn
(i)

  and 

)(i

nY are exponentially distributed. Where. i=1, 2. 

13. Component 1 and component 2 will be replaced by 

new and identical ones at the time of N th

1
 and N th

2
 

failures respectively and both replacement times are 

negligible. 

14. The working reward per unit time of the system is C
w

, the repair cost per unit time of component i for every 

failure is C
i
, and the replacement cost of component i 

at each time is Cr
i
; i=1,2. 

15. The replacement policy (N 1 , N 2 ) is used based on 

the number of failure of component 1 and component 

2. 

In the next section an optimal solution is discussed.  

 

3. The Long-Run Average Cost Rate  

 

According to the assumptions of the model, the explicit 

expression for the long-run-average cost per unit time for 

the series system can be obtained under the replacement 

policy (N 1 , N 2 ) in which the series system is replaced 

when the number of failures of component 1 and 

component 2   reaches N 1  and N 2 respectively. 

 Let T
)( i

k and S
)( i

k be respectively the operating time and 

the repair time for component i between (k-1)th 

replacement and kth replacement, k-1,2,….;i=1,2. 

 Let U (t) be the total working time of the series system 

before time t and  V (t)= S
(1)

 (t)+ S 
(2)

(t) be the total repair 

time of component i in (0,t) for i=1, 2 and the operating 

time of the system in (0,t) should be equal to the operating 

time of any component i=1,2.Thus 

T (t)= T )1(

1 + T )1(

2 +………+ T )1(

1N
 + 1 (t),                (3.1)

 

= T )2(

1
+T )2(

2
+………..+T

)2(

2N + 2 (t) ,                              (3.2) 

S )1( (t) = S )1(

1
+ S )1(

2
+………+ S

)1(

1N  +   (t) ,                 

(3.3) 

S )2( (t) = S )2(

1
+S )2(

2
+………..+S

)2(

2N +  (t).                  (3.4)
 

Where N 1  is the replacement number of component 1 

before time t, and 1 (t) is the working time of the system 

between the N 1

th  replacement and time t, while N2 is the 

replacement number of component before time t, and 2

(t)      is the working time of the system between the N2
th  

replacement and time t. And  1 (t) is the repair time of 

component 1 between N 1

th  replacement and time t, while

 2 (t) is the repair time of the component 2 between the 

N2
th  replacement and time t. 

 According to assumption (10), component i is replaced 

when the number of failures of component i reaches Ni . 

Thus we have 

)(,......3,2,1.;2,1, )(

1

)()( tnmiXT i
iN

k

i

k

i

m  


,                         (3.5)  

 )(.....,3,2,1;2,1, )(
1

1

)()( tnmiYS i
iN

k

i

k

i

m  




.                         (3.6) 

It also also known that T )(

1

i , T )(

2

i  …….. ….are 

respectively the regenerative points of component i. Thus 

{T
)( i

n , i=1, 2, n=1, 2…….} form a renewal process. 

Similarly {S
)( i

n , i=1, 2, n=1, 2….} is also form a renewal 

process. Because τ1
(i)

be the time interval between the 

installation of the system and the first replacement  or two 

consecutive replacements of component i under 

policy(N1,N2).  Let τ )( i

j  (j 2) be the time between the (j-

1) th  replacement and the j th  replacement of the 

component i-under policy(N 1 , N 2 ). Clearly {τ 
)(

1

i

, τ 
)(

2

i

 

……..} form a renewal process. 

 Thus τ )(

1

i = T )(

1

i + S )(

1

i ; τ )( i

j = T )( i

j + S )( i

j . 

Let D (t) is the cost function of the system at time t, 

according to the assumptions of the model, it can be 

expressed by 

  D (t)= )()()()()( )(

2

)(

1

)2(

2

)1(

1 tTCtnrtnrtSCtSC w

ii  (3.7) 

 Then time t can be expressed by                 

 t=T(t)+S
(1)

(t)+S
(2)

(t).                                                    (3.8) 

 Let C (N 1 , N 2 ) be the long-run- expected cost per 

unit time of the system under the replacement policy (N 1 , 

N 2 ). We have: [see Ross, S.M (1970)]. 

C(N 1 ,N 2 ) = 
t

lim  
)(

)(

tE

tDE                               (3.9) 

=
t

lim  
 

.
)()()(

)()()()()(
)2()1(

)(

221
)(

1

)2(

2

)1(

1

tStStTE

tTCtnrtnrtSCtSCE w

ii




                                     

                  (3.10)   

    

































))((

)((

))((

)((
1

))((

)((

))((

)((

))((

)((

))((

)((

),(
)2()1(

)(

2
2

)(

1
1

)2(

2

)1(

1

21

tTE

tSE

tTE

tSE

C
tTE

tnE
r

tTE

tnE
r

tTE

tSE
C

tTE

tSE
C

NNC

w

ii

 

                  (3.11) 

Since{ τ )(

1

i , τ )(

2

i  ……..} , {T
)( i

n , i=1, 2, n=1, 2…….}and 

{S
)( i

n , i=1, 2, n=1, 2….} are respectively renewal 

processes. Let W
i
 be the length of a renewal cycle of 

component i-under policy (N 1 , N 2 ).Then according to  

the renewal reward theorem Ross . 
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Table 4.1: The values of long-run average cost per unit time 

 

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  
  

  
  

  
 N

2
 

N1   

  2 3 4 5 6 7 8 

2 23.95666 21.11015 20.10158 19.64537 19.41679 19.29882 19.24029 

3 21.76829 19.65539 18.95846 18.68573 18.5831 18.55943 18.57545 

4 20.87405 19.08431 18.51433 18.31234 18.25672 18.26769 18.31093 

5 20.4639 18.85254 18.34319 18.17075 18.13282 18.15592 18.20832 

6 20.28548 18.78646 18.30745 18.14549 18.11149 18.13603 18.18887 

7 20.23444 18.81323 18.3489 18.1875 18.15012 18.1703 18.21881 

8 20.25973 18.89678 18.43857 18.27222 18.22733 18.23982 18.28116 

9 20.33337 19.01715 18.56026 18.3859 18.33114 18.33396 18.3664 

10 20.43875 19.16228 18.70419 18.5202 18.45426 18.44623 18.46872 

11 20.56531 19.32443 18.86397 18.66965 18.59191 18.57243 18.58434 

12 20.70604 19.49835 19.03524 18.83049 18.74079 18.70962 18.71066 

13 20.85606 19.68029 19.21484 18.99999 18.8985 18.85567 18.84576 

14 21.01189 19.86749 19.4004 19.17607 19.0632 19.00895 18.98819 

15 21.17095 20.05785 19.59007 19.35708 19.23344 19.16815 19.13679 

16 21.33131 20.2497 19.78235 19.54168 19.40799 19.3322 19.29059 

17 21.49148 20.44172 19.97602 19.72873 19.58582 19.50016 19.44875 

18 21.6503 20.63282 20.17002 19.91726 19.76603 19.67119 19.61052 

19 21.80687 20.8221 20.36347 20.10638 19.94781 19.84454 19.77522 

20 21.96047 21.00882 20.55558 20.29535 20.13041 20.01953 19.94219 

 

We have 
t

Lim

))((

))((

tUE

tSE i

 ; i=1, 2. 

t

Lim

)(

)(

)(

)(

)(

)(

))((

))((

)(

)(

)(

)(

i

i

i

i

i

i

TE

SE

wE

TE

wE

SE

t

tTE

t

tSE

 ,i=1,2.                 (3.12) 

Similarly
t

Lim
.2,1,

)(

1

))((

))((
)(

)(

 i
TEtTE

tNE
i

i

               (3.13) 

 

According to results in equations (3.12) and (3.13), 

equation (3.11) becomes        

.

)(

)(

)(

)(
1

)()()(

)(

)(

)(

),(

)2(

)2(

)1(

)1(

)2(
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)1(

1

)2(
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
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TE
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w         (3.14)                                          

According to the assumption of the model and definition 

(2), we have 

  
 













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 
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
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1
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2
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1
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N
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k

N

k
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b
YESE
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Substituting the results of equations (3.15) to (3.17) in 

(3.14), we have  
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21
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m

l

m

C
l

Cr

l

Cr

l

m
C

l

m
C

NNC

w                          (3.18) 

This is an expression for the long run average cost rate 

under policy N.  

 

Where 

 



1

1
1

1
1

N

k k
l




, 





2

1
2

2
2

N

k k
l 


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



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1
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1
1
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k
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b
m


, 








12

1
)1(

2

2

2

N

k
k

b
m


. 

For fixed l, we can find N 2 (l) such that C 2 ( N 2

* (l)) is 

minimized, namely N 1 =1,2,……,l, we can find N 2

* (1), 

N 2

* (2), N 2

* (3)…….. N 2

* (l)…….respectively such 

that the corresponding  C 2 ( 1,N 2

* (l)), C 2 ( 2,N 2

* (l)), 

………. C 2 ( l,N 2

* (l))…..are minimized. 

 According to the definition of AGP, the successive 

working times of component i-after repair will be shorter 

and shorter, while the consecutive repair times of 

component i-i=1,2 after failure will become longer and  
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longer. Ultimately, it can‟t work any longer neither can it  

be repaired. So, the total life time of the system is limited. 

The minimum of C (N1, N2 exists, we can find (N1
*
, N1

*
,)  

such that C (N 1

* , N 2

* ) is minimum. 

 The next section provides numerical results to 

highlight the theoretical results. 

 

4.     Numerical Results and Conclusions 

 

For the given hypothetical values of the parameters of 

α1=0.95, α2=0.62, b1=0.95, b2=0.92, λ1=3,  λ2=4, µ1=8, 

µ2=4, 

C1=20, C2=25, r1=200, r2=240, Cw=50 

 

 
 

Conclusions 

 

From the table 4.1 and graph 4.1, it is examined that the 

average cost rate is minimum i.e., 18.11149 when the 

failures of component 1 and component 2 reaches 6 and 6 

respectively. Thus the system should be replaced when the 

failures of component 1(N1) and component 2(N2) reaches 

6 and 6 respectively. 
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