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Abstract 

  

Maximum likelihood (ML) decoding is an optimal detector with high-performance for multiple-input-multiple-output 

(MIMO) communication systems. While it is attractive due to its superior performance in terms of BER,  its complexity 

using an exhaustive search which grows exponentially with the number of antennas and order of the modulation. It 

becomes infeasible to apply to practical systems as it searches through all lattice points in the constellation. Sphere 

decoding (SD) is a promising method to reduce the average decoding complexity without compromising performance. It 

provides optimal performance with reduced complexity as it searches the points within the specified radius of sphere. 

The complexity of the sphere decoder depends on the initial radius selection of the sphere, to begin search process. 

Attention is drawn to initial radius selection strategy, since an inappropriate initial radius can result in either a large 

number of lattice points to be searched, or a large number of restart actions. The simulations are performed for 

constellation size of 4-QAM, 8-QAM and 16-QAM for antenna size of 2X2 MIMO. It is observed that the performance of 

Probabilistic Tree Pruning (PTP)-SD converges with ML by taking less time and maintaining the same performance. It is 

proposed that a Look Up Table (LUT) for initial radius Using Radius Choice Algorithm is generated. The complexity 

reduces by 13% as the number of FLOPS required reduces. 

 

Keywords: Multiple Input Multiple Output, Maximum-likelihood decoding, Sphere Decoding, Sphere Decoding, Radius 
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1. Introduction 

 
1
Due to the large available bandwidth on a scattering-rich 

wire-less channel (G. J. Foschini, 1996), multiple-input 

multiple-output (MIMO) system has been extensively used 

in the communication system. MIMO uses multiple 

antennas at both the transmitter and receiver to improve 

the performance of the communication system. It has 

attracted attention in wireless communications; because it 

offers significant increase in data throughput without any 

increase in transmit power. It achieves this goal by 

spreading the same total transmit power over the antennas 

that improves the spectral efficiency.  

 The complexity of any decoding system increases 

exponentially with the number of transmits antennas and 

the constellation size. It is known that Maximum 

Likelihood Decoding (MLD) is the optimum decoding 

method as it searches each points in the constellation and 

chooses the best of them. But the requirement of 

exhaustive full search makes it unrealizable in a practical 

system. Sphere decoding (SD) is one of the methods to 

reduce the complexity of MLD with sub-optimal solution 

as it searches the points which are present within the 

specific radius of the sphere. The conventional SDA is 
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very complex for hardware implementation and the 

throughput of current SDA implementation is below the 

requirement of next generation high-speed wireless 

communications. Choosing the initial radius of the sphere 

and updating its radius whenever the required lattice point 

is not found within the sphere, contribute to the 

complexity of the system.  

 Many algorithms were proposed to further reduce the 

complexity of SD such as Maximum-Likelihood detection 

and the search for the closest lattice point method (M. O. 

Damen, H. E. Gamel, and G. Caire, 2003).  Closest point 

search in lattices method (B. Hassibi and H. Vikalo, 2005), 

(B. Shim and I. Kang, 2008), minimum mean square error 

(MMSE) detection method, Radius Choice Algorithm ( 

Shiliang WANG, Xiaolong GUO, Mala Umar Mustpha 

Bakura, Songlin SUN, Xiaojun JING, Hai HUANG, 2012) 

to set the initial radius and Increasing Radii Algorithm 

(IRA), Probabilistic Tree Pruning Sphere Decoding (PTP-

SD) algorithms for updating the radius. The number of 

visited nodes determines the complexity of SD. This can 

be reduced by removing the unlikely branches in early 

stage of sphere search. The sphere constraint of the SD 

algorithm offers a loose necessary condition in the early 

layers of search.(M. O. Damen, H. E. Gamel, and G. 

Caire, 2003) and (B. Hassibi and H. Vikalo, 2005) choose 

∞ as the initial radius. In this situation, the first point 
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obtained by SD is known as Babai point or Zero-Forcing 

Decision Feedback Equalization (ZF-DFE) point. The 

radius can be updated as the distance between Babai point 

and the received point. (Qianlei Liu and Luxi Yang, 2007) 

uses Minimum Mean Square Error (MMSE) detection to 

obtain the initial point. The two methods mentioned above 

ensure that there is at least one point in the sphere, but the 

radii are often too large due to the poor performance of 

ZF-DFE and MMSE. Hence, it does not reduce the 

complexity of SD considerably. Most of the calculations in 

standard sphere decoders are redundant, in the sense that 

they either calculate quantities that are never used or 

calculate some quantities more than once. 

Different methods have been proposed to limit the 

complexity of the sphere decoding algorithm. Most of 

them still have a variable complexity depending on the 

channel conditions. They can be classified in different 

ways. The first is to modify in the existing algorithm to 

marginally reduce the complexity associated with 

additional operations. The second is to simplify the 

algorithm for specific constellation types. The basic 

concept is to search a N-dimensional hyper sphere of some 

predefined radius R within the code space. The choice of 

the radius R to search over is a tradeoff between 

exponentially increasing search complexities as R 

increases. The probability of error in decoding will be 

more as the R reduces i.e. the correct code point may not 

be inside the search radius. The recent analysis in (L. G. 

Barbero and J. S. Thompson, 2007) has shown that the 

complexity of sphere decoding algorithm at high SNR for 

16-QAM (Quadrature Amplitude Modulation) and 64-

QAM modulations can be reasonably implemented with 

current processors. 

 

2. Sphere Decoding 

 

Considering an uncoded MIMO system with M transmit 

and N receive antennas (M N), the received complex 

signal at each instant time is given by 

                                                                                 

yc= 
 

√  
 Hcxc+ nc                          (1)                                                  

 

Where xc is the transmitted symbol vector whose 

components are elements of a Quadrature Amplitude 

Modulation (QAM) signal set 
 
 

  with size A. We assume 

all vectors are transmitted with the same probability. Hc is 

a complex channel matrix known perfectly to the receiver. 

nc is a circular symmetric complex Gaussian noise vector. 

E is the average power of the transmitted symbol. If the 

signal-to-noise ratio is ρ, the variance of the component of 

nc  is 1/ρ. In order to use SD, the complex number signal 

model in (1) needs to be reformulated to a real number 

signal model as follows.  
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Where    (·) and   (·) are the real and imaginary parts of 

its argument. Then the real number signal model is given 

by 

                                                                      

 y = Hx + v                                       (3)                                            

 

Let m = 2 M, n = 2 N, hence, H is a (n × m) real matrix. 

The real MLD is given by, 

                                                                                         

 ̂=argmin|y-Hx|
2
                       (4)                                                     

 

SD reduces the complexity by limiting the search space in 

a hyper sphere S(y, √C) centered at y, where C is the 

squared radius of the sphere. SD can be expressed as 

                                                                                            

|y-Hx|
2                                                                       (5) 

Performing QR-decomposition of H as 

  [   ][    ]
T
, where R is an m × n upper 

triangular matrix with positive diagonal elements, 0 is a 

zero matrix, Q and Q’ are an n × m and n × (n–m)) unitary 

matrices respectively. The inequality (5) is equivalent to, 
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Where y’ = Q
T
y and c0 = C - |(Q’)

T
y |

2
. 

 
Figure 1. Illustration of sphere decoding in a tree. 

 

In the above figure the numbers labeled for each node are 

the path metrics. Note that the dotted nodes are skipped 

since they are outside of sphere constraint. 

 

3. Radius Choice Algorithm 

 

In Radius Choice algorithm , the initial radius can be 

obtained corresponding to the expected number of points 

for particular values of SNR. 

 

3.1 Expected number of points in sphere 

 

The received symbol vector is denoted as  ̃  and the actual 

transmitted symbol vector as x. Then, 
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    ̃         ̃ = H (x –   ̃)                 (9)                                            

 

Where e = x– ̃ is the error symbol vector. Therefore, the 

components of  (    ̃) are i.i.d.  ̅ (       
 | |) 

random variables and ⌊    ̃⌋2 is a scaled chi- squared 

distribution with m degrees of freedom, where   
  is the 

variance of the component of H. When the decoding is 

perfect,  ̃  equals to x so y–Hx = n is Gaussian random 

vector whose component is  ̅ (    ) random variable. 

Then when a definite radius C is given, we can obtain the 

probability that the lattice point is  ̃ in the sphere, 

 

                                                                          

      (10)    

 

   ̃( )    (  ( 
    

 | | ))                                     (11)                                                                

 

Where    is the co-variance and   
  is the covariance of 

component of channel matrix H. 

 

    (    )                         (12)                                                              

 

Where L
2
 is the QAM constellation, Ґ(.) is the Gamma 

function and Ф(.) is the Cumulative Distributive Function 

(CDF) of chi-square distribution.  Here, form a table of 

initial radius value for any expected number of lattice 

points for a given value of SNR. A sequence of number of 

points such as D1, D2, D3 and so on are considered with a 

constant incremental steps. Then radius values C1, C2, C3 

and so on respectively using the following equations (5), 

(9) for a given value of SNR are calculated. For 16-QAM,  

the equation for the expected number of points is given by, 

                                                                                                           

   (13) 

 

 

Where     ( ) is the coefficient of x
q
 in the polynomial 

(1+x+x
4
+x

9
)

l 
(1+2x+x

4
)

k-l.
 . Similar results can be obtained 

for 64-QAM and other constellations. The initial radius C1 

is chosen such that it should eliminate the too-large and 

the too-small conditions. The too-large condition implies 

that there are many points within the sphere. Hence, the 

complexity cannot be reduced effectively. The too small 

condition implies that there is no lattice point within the 

sphere which leads to repetitive search and hence, 

increases the complexity. If the search fails with C1, then 

we start the new search with C2 as the initial radius. If 

there is only one lattice point then the solution will be the 

ML solution.  

     In this paper, it has been proposed that the complexity 

of the PTP-SD can be reduced further by combining the 

SD algorithm with the radius choice algorithm. In PTP-SD 

algorithm, instead of starting the search radius from 

infinity, the points can be searched from the initial radius 

which is obtained from the Radius Choice algorithm table. 

Hence, in this paper, it has been shown that the 

combination of these two algorithms will lead to the 

significant reduction in the complexity maintaining the 

same performance. 

4.  Simulations 

 

In this section, we present the results of simulations for 

different system configurations. 

 

4.1 Performance  analysis of ML  and Sphere  decoder 

 

 
 

Figure 2. BER Vs SNR for M=N=2 and 4-QAM. 

    

Figure 2 is a plot of bit error rate for 2X2 MIMO and 4-

QAM constellation size. It shows the plot for ML decoder 

and SD for various values of initial search radius values. It 

shows a plot BER Vs SNR for the initial radius values 

from R=1 to 8. From the graph it is found that the 

performance of SD approaches that of ML at larger values 

of R i.e. at R=8. The arrow indicates this in the graph. 

 

 
 

Figure 3. BER Vs SNR for M=N=2 and 8-QAM. 

 

The Figure 3, Figure 4 and Figure 5 show the performance 

for 8-QAM, 16-QAM and 32-QAM constellation size 

respectively, keeping the other parameters constant.  From 

the figures, it is seen that the performance of ML can be 

achieved with SD with reduced complexity by eliminating 

the redundant calculations multiple number of times. The 

Table 1 gives the details of the time taken by the different 

modulation techniques with different constellation sizes 

for ML and SD. This shows that the time reduces for SD  
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Table 1. The table of elapsed time for ML decoding and for the SD for radius values from 1 to 8. 

 

MIMO SYSTEM Antenna size 2 X2 
Time taken in seconds   

For 4-QAM For 8-QAM For 16-QAM For 32-QAM 

Maximum Likelihood decoder 
        

112. 401190 119.271497 123.752901 129.212373 

Sphere decoder with radius R=1 0.000879 0.001121 0.001026 0.00125 

R=2 0.000834 0.000878 0.001105 0.001326 

R=3 0.000877 0.000918 0.001145 0.001613 

R=4 0.000898 0.001064 0.001181 0.00164 

R=5 0.000903 0.00107 0.001235 0.001663 

R=6 0.000981 0.001081 0.001306 0.001848 

R=7 0.000993 0.001286 0.001353 0.002042 

R=8 0.001044 0.001474 0.001559 0.002453 

 

Table.2. Initial radius Look Up Table for 4 X 4 MIMO with 16QAM when D=1,2,....and 8. 

 

SNR D=1 D=2 D=3 D=4 D=5 D=6 D=7 D=8 

1 4.038472 0.069118 0.076905 0.082987 0.088056 0.092442 0.096332 0.099843 

2 2.023659 0.063823 0.071013 0.07663 0.08131 0.08536 0.088952 0.092194 

3 1.349106 0.062058 0.069049 0.074511 0.079062 0.082999 0.086492 0.089645 

4 1.009618 0.061176 0.068067 0.073451 0.077937 0.081819 0.085262 0.08837 

5 0.804156 0.060646 0.067478 0.072815 0.077263 0.081111 0.084524 0.087605 

6 0.665707 0.060293 0.067086 0.072392 0.076813 0.080639 0.084032 0.087095 

7 0.565551 0.060041 0.066805 0.072089 0.076492 0.080302 0.083681 0.086731 

8 0.489329 0.059852 0.066595 0.071862 0.076251 0.080049 0.083417 0.086458 

9 0.429062 0.059705 0.066431 0.071685 0.076063 0.079852 0.083212 0.086245 

10 0.379964 0.059587 0.0663 0.071544 0.075914 0.079695 0.083048 0.086075 

11 0.338988 0.059491 0.066193 0.071428 0.075791 0.079566 0.082914 0.085936 

12 0.304105 0.059411 0.066104 0.071332 0.075689 0.079458 0.082802 0.08582 

13 0.273908 0.059343 0.066028 0.07125 0.075602 0.079368 0.082708 0.085722 

14 0.247393 0.059285 0.065963 0.071181 0.075528 0.07929 0.082626 0.085638 

15 0.223823 0.059234 0.065907 0.07112 0.075464 0.079222 0.082556 0.085565 

 

as compared to Ml giving the same performance w.r.t bit 

error rate. It is also found that as the size of constellation 

increases time taken also increases. Here the measure of 

complexity of SD is the time taken by the system to give 

the above mentioned performance.  

 

 
 

Figure 4. BER Vs SNR for M=N=2 and 16-QAM. 

 
 

Figure 5. BER Vs SNR for M=N=2 and 32-QAM. 

 

4.2.  Complexity analysis of ML and sphere decoder  

 

From Table.1 it can be observed that the elapsed time for 

ML decoding is almost three times higher than that for SD. 

As elapsed time is directly related to the complexity, it can 
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be deduced that the complexity of the ML is much higher 

than that of SD. 

 The Table.2 is generated using the above mentioned 

equations. These equations use  the noise statistics, 

number of antennas at transmitter and receiver sides, 

available SNR and the number of points expected in the 

sphere and provide with a value if initial radius to begin 

the search process. Otherwise the initial radius was taken 

up as infinity. This reduces the complexity of SD further 

and hence provide with an optimal radius selection 

strategy. 

 The Figure 6 and Figure 7 shows the reduction in the 

number of floating point operations required to give the 

required performance for the MIMO systems using SD. It 

is observed that there is a reduction in the number of 

FLOPS by 13% at higher SNR i.e. above 5dB. Above this 

SNR the performance is unchanged after using the LUT 

for SD. 

 
 

Figure 6.  The plot of number of FLOPS Vs  SNR for a 4 

X 4 MIMO and 16-QAM. 

 

 
 

Figure 7.  The plot of % reduction in FLOPS Vs  SNR for 

a 4 X 4 MIMO and 16-QAM. 

 

5. Conclusion 

 

Sphere Decoding provides optimal performance with 

reduced complexity as it searches the points which are 

within the specified radius of the sphere. The complexity 

of the sphere decoding is dependent on the initial radius 

selection of the sphere, basically to begin search process. 

Attention is drawn to initial radius selection strategy, since 

an inappropriate initial radius can result in either a large 

number of lattice points to be searched, or a large number 

of restart actions. The simulations are performed for 

constellation size of 4-QAM, 8-QAM and 16-QAM for 

antenna size of 2X2 MIMO. It is observed that the 

performance of SD converges with ML by taking less time 

and maintaining the same performance. The radius choice 

algorithm for MIMO SD is based on expected number of 

lattice points in the sphere. The obtained radius can reduce 

the search space effectively and ensure that the sphere is 

not empty with high probability. The complexity of SD is 

further reduced by the combination of the radius choice 

algorithm and the PTP-SD algorithm as the search can be 

started from the radius obtained from the table instead of 

infinity. There is a reduction in the complexity. It is 

proposed that a LUT for Initial Radius Using Radius 

Choice Algorithm is generated. Thus the complexity 

reduces by 13% as the number of FLOPS required 

reduces. 
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