Research Article

Hamming Index of Class of Graphs

Harishchandra S. Ramane ${ }^{\mathrm{a}^{*}}$ and Asha B. Ganagi ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Mathematics, Gogte Institute of Technology, Udyambag, Belgaum - 590008, India

Abstract

Let $A(G)$ be the adjacency matrix of a graph G. The rows of $A(G)$ corresponding to a vertex v of G, denoted by $s(v)$ is the string which belongs to Z_{2}^{n}, a set of n-tuples. The Hamming distance between the vertices u and v is the number of positions in which $s(u)$ and $s(v)$ differ. The Hamming index of a graph G is the sum of the Hamming distances between all pairs of vertices of G. In this paper we obtain the Hamming index of certain class of graphs.

Keywords: Hamming distance, Hamming index. Adjacency matrix, Mathematics Subject Classification: 05C99

1. Introduction

${ }^{1}$ Let $Z_{2}=\{0,1\}$ and $\left(Z_{2}+\right)$ be the additive group where + denotes addition modulo 2 . For any positive integer n, $Z_{2}{ }^{n}=Z_{2} \mathrm{X} Z_{2} \mathrm{X} \ldots \mathrm{X} Z_{2}$ (n factors) $=\left\{\left(x_{1}, x_{2}, \ldots x_{n} \mid x_{1}, x_{2}, \ldots x_{n} \in Z_{2}\right)\right\}$
Thus every element of $Z_{2}{ }^{n}$ is an n-tuple ($x_{1}, x_{2}, \ldots x_{n}$) written as $x=x_{1}, x_{2}, \ldots x_{n}$ where every x_{i} is either 0 or 1 and is called a string or word. The number of 1's in $x={ }_{1}, x_{2}, \ldots x_{n}$ is called the weight of x and is denoned by $\mathrm{wt}(x)$.

Let $x=x_{1}, x_{2}, \ldots x_{n}$ and $y=y_{1}, y_{2}, \ldots y_{n}$ be the elements of $Z_{2}{ }^{n}$. Then the sum $x+y$ is computed by adding the corresponding components of x and y under addition modulo2. That is $\quad x_{i}+y_{j}=0$ if $x_{i}=y_{j}$ and $x_{i}+y_{j}=1$ if $x_{i} \neq y_{j}$

The Hamming distance $H_{d}(x, y)$ between the strings $x=x_{1} x_{2}, \ldots x_{n}$ and $y=y_{1} y_{2}, \ldots y_{n}$ is the number of i's such that $x_{i} \neq y_{i}, 1 \leq i \leq n$.

Thus $\quad H_{d}(x, y)=$ Number of positions in which x and y differ $=\mathrm{wt}(x+y)$
Example: Let $x=01001 \& y=11010$ and $x+y=10011$,
Therefore $H_{d}(x, y)=\mathrm{wt}(x+y)=3$
A graph G is called a Hamming graph $[3,6]$ if each vertex $v \in V(G)$ can be labeled by a string of a fixed length $\mathrm{s}(\mathrm{v})$ such that $H_{d}(s(v), s(u))=d_{G}(u, v)$ for all $u, v \in V(G)$ where $d_{G}(u, v)$ is the length of shortest path joining u and v in G.

Hamming graphs are known as an interesting graph family in connection with the error-correcting codes and association schemes. For more details one can refer [S.

[^0]Bang et al,2008, V. Chepoi,1988, W. Imrich et al,1997, S. Klavzar et al, 2005, H. S. Ramane et al, 2013, R. Squer et al, 2001].

Motivated by the work on Hamming graphs in this we introduce and study the Hamming Index of a graph in association with its adjacency.

2. Preliminaries

Let G be an undirected graph without loops and multiple edges. Let $V(G)=\left\{v_{1}, v_{2}, \ldots v_{n}\right\}, E(G)=\left\{e_{1}, e_{2}, \ldots e_{n}\right\}$ be the vertex set and edge set of G respectively. The vertices adjacent to the vertex v are called the neighbours of v. The degree of a vertex v , denoted by degv is the number of neighbours of v.

The adjacency matrix of G is a square matrix $A(G)=$ $\left[a_{i j}\right]$ of order n
where $\quad a_{i j}=1 \quad$ if the vertex v_{i} is adjacent to v_{j}
$=0 \quad$ otherwise.
Rows of $A(G)$ represents the strings which belongs to $Z_{2}{ }^{n}$. The Row of $A(G)$ corresponding to the vertex $v \in V(G)$ is the string denoted by $s(v)$.

Definition 2.1: Hamming distance between the vertices u and v of G denoted by $H_{d}(u, v)$ is defined as $H_{d}(u, v)=$ $H_{d}(s(u), s(v))$

Definition 2.2: The Hamming Index[10] of a graph G, denoted by $H(G)$ is defined as,

$$
H(G)=\sum H_{d}\left(v_{i}, v_{j}\right) \quad 1 \leq \mathrm{i}<\mathrm{j} \leq \mathrm{n}
$$

Hamming index is a graph invariant.
Ex. :

Fig. 1: Graph G
For a graph G of Fig. 1, the adjacency matrix is
$A(G)=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
and the strings are $s\left(v_{1}\right)=0100$,
$s\left(v_{2}\right)=1011 \quad s\left(v_{3}\right)=0101 \quad s\left(v_{4}\right)=0110$

$$
\begin{array}{lll}
H_{d}\left(v_{1}, v_{2}\right)=4 & H_{d}\left(v_{1}, v_{3}\right)=1 & H_{d}\left(v_{1}, v_{4}\right)=1 \\
H_{d}\left(v_{2}, v_{3}\right)=3 & H_{d}\left(v_{2}, v_{4}\right)=3 & H_{d}\left(v_{3}, v_{4}\right)=2
\end{array}
$$

Therefore $H(G)=4+1+1+3+3+2=14$

3. Hamming Index of certain class of graphs

Definition: Consider two graphs $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right.$. Then the graph whose vertex set $n_{1} \mathrm{U} n_{2}$ and the edge set $m_{1} U m_{2}$ is called the union of G_{1} and G_{2} and is denoted by $G_{1} \mathrm{U} G_{2}$.

Theorem 3.1: Let $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$ be two graphs then Hamming index of union of G_{1} and G_{2} is,
$H\left(G_{1} \mathrm{UG}_{2}\right)=H\left(\mathrm{G}_{1}\right)+H\left(\mathrm{G}_{2}\right)+2\left(n_{1} m_{2}+n_{2} m_{1}\right)$
Proof:
Let $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$ be two graphs then then the adjacency matrix of union of G_{1} and G_{2} is,

$$
A\left(G_{1} \mathrm{UG}_{2}\right)=\left[\begin{array}{cc}
A\left(G_{1}\right) & O \\
O & A\left(\mathrm{G}_{2}\right)
\end{array}\right]
$$

where $A\left(G_{1}\right)$ and $A\left({ }^{G_{2}}\right)$ are adjacency matrices of G_{1} and G_{2} respectively, O is the null matrix.

Therefore,

$$
\begin{aligned}
& H\left(G_{1} \mathrm{UG}_{2}\right)_{\text {回 }} \\
& \left.\begin{array}{rl}
\sum_{1 \leq i<j \leq n_{1}} H_{\mathrm{d}}\left(u_{i},\right. & \left.v_{j}\right)+\sum_{n_{1} \leq i<j \leq n_{1}+n_{2}} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{n_{1}+n_{2}} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \\
= \\
H\left(G_{1}\right)+H\left(G_{2}\right) & +\sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{n_{1}+n_{2}} \operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(u_{j}\right) \\
= & H\left(G_{1} \mathrm{UG}_{2}\right)=
\end{array}\right)\left(\mathrm{G}_{1}\right)+H\left(\mathrm{G}_{2}\right)+2\left(n_{1} m_{2}+n_{2} m_{1}\right)
\end{aligned}
$$

Definition: Consider two graphs $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$. The join of G_{1} and G_{2}, denoted by $G_{1}+G_{2}$, is $G_{1} U G_{2}$ along with each vertex of G_{1} joined to every vertex of G_{2} by an edge.
Theorem 3.2: Let $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$ be two graphs then Hamming index of $G_{1}+G_{2}$ is,
$H\left(G_{1}+\mathrm{G}_{2}\right)=H\left(\mathrm{G}_{1}\right)+H\left(\mathrm{G}_{2}\right)+n_{1} n_{2}\left(n_{1}+n_{2}\right)-2 n_{1} m_{2}-2 n_{2} m_{1}$
Proof:
Let $G_{1}\left(n_{1}, m_{1}\right)$ and $G_{2}\left(n_{2}, m_{2}\right)$ be two graphs then the adjacency matrix of join of G_{1} and G_{2} is,

$$
A\left(G_{1}+\mathrm{G}_{2}\right)=\left[\begin{array}{ll}
\mathrm{A}\left(G_{1}\right) & J \\
J & \mathrm{~A}\left(G_{2}\right)
\end{array}\right]
$$

where $A\left(G_{2}\right)$ and $A\left(G_{2}\right)$ are adjacency matrices of G_{1} and G_{2} respectively and
$J=\left[\begin{array}{ccc}1 & 1 \ldots & 1 \\ 1 & 1 \ldots . \\ . & . & . \\ 1 & 1 \ldots 1\end{array}\right]$
Therefore,

$$
\begin{aligned}
& H\left(G_{1}+\mathrm{G}_{2}\right) \text { 回 }=\sum_{1 \leq i<j \leq n_{1}+n_{2}} H_{d}\left(u_{i}, v_{j}\right) \\
& =\sum_{1 \leq i<j \leq n_{1}} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{n_{1} \leq i<j \leq n_{1}+n_{2}} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{n_{1}+n_{2}} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \\
& H\left(G_{1}\right)+H\left(G_{2}\right)+ \\
& \sum_{i=1}^{n_{1}} \sum_{j=n_{1}+1}^{n_{1}+n_{2}}\left\{n_{1}+n_{2}-\left[\operatorname{deg}\left(u_{i}\right)+\operatorname{deg}\left(u_{j}\right)\right]\right\} \\
& \therefore \quad H\left(G_{1}+G_{2}\right)=H\left(G_{1}\right)+H\left(G_{2}\right)+n_{1} n_{2}\left(n_{1}+n_{2}\right)-2 n_{1} m_{2}-2 n_{2} m_{1}
\end{aligned}
$$

Definition: Let G be a graph with vertices $v_{1}, v_{2}, \ldots v_{\mathrm{n}}$. A graph G^{+}is obtained from G by inserting new vertices u_{1}, $u_{2}, \ldots u_{\mathrm{n}}$, and joining u_{i} to v_{i} by an edge, $i=1,2, \ldots \mathrm{n}$

Theorem 3.3: Let C_{n} be cycle on n vertices then Hamming index of C_{n}^{+}is,

$$
H\left(C_{n}^{+}\right)=\left[\frac{4 n-5}{n-2}\right] H\left(C_{n}\right)
$$

Proof:
Let C_{n} be cycle on n vertices then the adjacency matrix of C_{n}^{+}is
$A\left(C_{n}^{+}\right)=\left[\begin{array}{ll}A\left(\mathrm{C}_{\mathrm{n}}\right) & I \\ I & O\end{array}\right]$
where $A\left(C_{n}\right)$ is the adjacency matrix of C_{n}, I is the Identity matrix of order n and O is the null matrix Therefore,

$$
\begin{align*}
& H\left(C_{n}^{+}\right)_{\text {Q }}=\sum_{1 \leq i<j \leq 2 n} H_{d}\left(u_{i}, v_{j}\right) \\
& =\sum_{1 \leq i<j \leq n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{n+1 \leq i<j \leq 2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \\
& \quad= \\
& \sum_{u, v \in C_{n}} 2+H_{\mathrm{d}}(u, v)+\sum_{n+1 \leq i<j \leq 2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \tag{1}
\end{align*}
$$

Where,
i)

$$
\sum_{n+1 \leq i<j \leq 2 n} H_{d}\left(u_{i}, v_{j}\right)=2\left({ }^{n} C_{2}\right)
$$

ii)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)= & \sum_{i=1}^{n} \sum_{\sum_{n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \quad \text { for pairof }\left(u_{i}, v_{j}\right) \text { adjacent pairs }} \\
& +\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \quad \text { for pairof }\left(u_{i}, v_{j}\right) \text { non-adjacent pairs } \\
\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) & =\text { hamming distances between } \mathrm{n}-\text { adjacent pairs }=4(\mathrm{n})
\end{aligned}
$$

$\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)=$ hamming distance between $\left(\mathrm{n}^{2}-\mathrm{n}\right)$ non - adjacent pairs
$=$ Hamming distance between $2 n$ pairs with common neighbour
+Hamming distance between $\left[\left(n^{2}-\mathrm{n}\right)-2 n\right]$-pairs with non common neighbor $=2(2 n)+4\left(n^{2}-3 n\right)$

Substituting in eqn(1),

$$
\begin{aligned}
& H\left(C_{n}^{+}\right)_{\text {Q }}= \\
& {\left[H\left(C_{n}\right)+2{ }^{n} C_{2}\right]+2{ }^{n} C_{2}+\left[4 n+2(2 n)+4\left(n^{2}-3 n\right)\right]} \\
& =H\left(C_{n}\right)+6 n^{2}-6 n \\
& =2 n(n-2)+6 n^{2}-6 n \\
& \text { [H. S. Ramane et al, 2013] } \\
& =2 \mathrm{n}(4 \mathrm{n}-5 \\
& =\left[\frac{4 n-5}{n-2}\right] H\left(C_{n}\right)
\end{aligned}
$$

Theorem 3.4: Let K_{n} be complete graph on n vertices then Hamming index of K_{n}^{+}is,
$H\left(K_{n}^{+}\right)=H\left(K_{n}\right)+n^{3}+n^{2}$
Proof:
Let K_{n} be complete graph on n vertices then the adjacency matrix of K_{n}^{+}is
$A\left(K_{n}^{+}\right)=\left[\begin{array}{ll}A\left(\mathrm{~K}_{\mathrm{n}}\right) & I \\ I & O\end{array}\right]$
where $A\left(\mathrm{~K}_{\mathrm{n}}\right)$ is the adjacency matrix of $\mathrm{K}_{\mathrm{n}}, I$ is the Identity matrix of order n and O is the null matrix

Therefore,

$$
H\left(K_{n}^{+}\right)=\sum_{1 \leq i<j \leq 2 n} H_{d}\left(u_{i}, v_{j}\right)
$$

$$
=\sum_{1 \leq i<j \leq n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{n+1 \leq i<j \leq 2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)
$$

$$
\begin{equation*}
=\sum_{u, v \in C_{n}} 2+H_{\mathrm{d}}(u, v)+\sum_{n+1 \leq i<j \leq 2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right)+\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \tag{1}
\end{equation*}
$$

Where,
i)

$$
\sum_{n+1 \leq i<j \leq 2 n} H_{d}\left(u_{i}, v_{j}\right)=2\left({ }^{n} C_{2}\right)
$$

ii)

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{d}\left(u_{i}, v_{j}\right)= & \sum_{i=1}^{n} \sum_{n=1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \text { for pair of }\left(u_{i}, v_{j}\right) \text { adjacent pairs } \\
& +\sum_{k=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) \text { for pair of }\left(u_{i}, v_{j}\right) \text { non - adjacent pairs } \\
\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{\mathrm{d}}\left(u_{i}, v_{j}\right) & =\text { hamming distances between } \mathrm{n} \text {-adjacent pairs }=(\mathrm{n}+1)(\mathrm{n})
\end{aligned}
$$

W. Imrich, S. Klav`zar (1993), A simple O (mn) algorithm for $\sum_{i=1}^{n} \sum_{j=n+1}^{2 n} H_{d}\left(u_{i}, v_{j}\right)=$ hamming distance between $\left(\mathrm{n}^{2}-\mathrm{n}\right)$ non - adjacent pairs $=(\mathrm{n}-1)\left(\mathrm{n}^{2}-\mathrm{n}\right) \quad$ recognizing Hamming graphs, Bull. Inst. Combin. Appl., 9, 45-56.
W. Imrich, S. Klav̌zar (1996), On the complexity of recognizing Hamming graphs and related classes of graphs, European J. Combin., 17, 209-221.

Substituting in eqn(1),

$$
\begin{aligned}
& H\left(K_{n}^{+}\right)= \\
& {\left[H\left(K_{n}\right)+2^{n} C_{2}\right]+2^{n} C_{2}+\left[n(n+1)+(n-1)\left(n^{2}-n\right)\right]} \\
& =H\left(K_{n}\right)+n^{3}+n^{2}
\end{aligned}
$$

Acknowledgement

Authors are thankful to Prof. P. R. Hampiholi for his suggestions.

References

S. Bang, E. R. van Dam, J. H. Koolen (2008), Spectral characterization of the Hamming graphs, Linear Algebra Appl., 429, 2678-2686
V. Chepoi (1988), d-connectivity and isometric subgraphs of Hamming graphs, Cybernetics, 1 (1988), 6-9.
W. Imrich, S. Klav zar, Recognizing Hamming graphs in linear time and space, Inform. Process. Lett., 63 (1997), 91-95.
S. Klav̌zar, I. Peterin (2005), Characterizing subgraphs of Hamming graphs, J. Graph Theory, 49, 302312.
B. Kolman, R. Busby, S. C. Ross (2002), DiscreteMathematical Structures, Prentice Hall of India, New Delhi,
M. Mollard (1991), Two characterizations of generalized hypercubes, Discrete Math., 93, 63-74.
B. Park, Y. Sano (2011), The competition numbers of Hamming graphs with diameter at most three, J. Korean Math. Soc., 4, 691-702.
Harishchandra S. Ramane and Asha B. Ganagi (2013),
Hamming distance between vertices and Hamming index of graphs, SIAM Journal on Discrete Mathematic(preprint)
R. Squier, B. Torrence (2001), A. Vogt, The number of edges in a subgraph of a Hamming graph, Appl. Math. Lett., 14,701705
D. B. West (2009), Introduction to Graph Theory, PHI Learning, New Delhi

[^0]: *Corresponding author: Harishchandra S. Ramane

