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Abstract 

  

This paper introduces a method for diagnosis of bearing fault of induction motor under transient conditions. The q-axis 

component of the stator current signal is decomposed by using the discrete wavelet transform (DWT). The fault detection 

method is developed by using the artificial neural network (ANN) to identify the motor state. A dynamic model of the 

squirrel-cage induction motor taking account the bearing faults is developed using simulink/matlab. Simulation results 

show that the better performance of the proposed method. 
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1. Introduction 

 
1
Due to the close relationship between motor system 

development and bearing assembly performance, it is 

difficult to imagine the progress of modern rotating 

machinery without consideration of the wide application 

of bearings. In addition, the faults arising in motors are 

often linked with bearing faults. In many instances, the 

accuracy of the instruments and devices used to monitor 

and control the motor system is highly dependent on the 

dynamic performance of bearings (W. Saadaui  et 

al,2011). 

 Traditionally, diagnostics of bearings is carried out by 

means of monitoring of vibrations either of the bearings or 

the motor case. This method requires the use of 

accelerometers or other vibration sensors and appropriate 

devices for signal conditioning and can be expensive and 

not always simple to be performed. On the contrary, 

monitoring of stator current requires the use of a current 

probe that can also be employed for the diagnosis of faults 

(L. Frosini  et al,2010). 

 Signal processing methods such as fast Fourier 

transform (FFT) are used to analysis the motor current 

signal in steady state conditions. The analysis of a non-

stationary signal using the FFT does not give satisfactory 

results. Better results can be obtained using wavelet 

analysis. The advantages of using wavelet techniques for 

fault monitoring and diagnosis of induction motors is 

increasing because these techniques allow us to perform 

stator current signal analysis during transients. The 

wavelet technique can be used for a localized analysis in 

the time-frequency or time-scale domain. It is then a 

powerful tool for condition monitoring and fault diagnosis 

(M. E. Benbouzid et al,2000).  

                                                           
*Corresponding author: Habeeb J. Nekad 

In this paper, an effective method is presented to bearing 

fault detection based on the MCSA method. Wavelet 

transform can be used to detect the fault under transient 

conditions. The q-axis component of the stator current 

signal is decomposed by using DWT. The fault detection 

method is implemented by means of an ANN that is 

trained using the RMS values of the wavelet coefficients. 

 

2. Bearing Fault Signature 

 

Bearing consists of two rings called the inner and outer 

rings. A set of balls or rolling elements placed in raceways 

rotate inside these rings as shown in   Fig. (1). Bearing 

defects can occur as a result of fatigue of their material 

under normal operational conditions. First, cracks will 

appear on the tracks and on the balls. Then pitting and 

scuffing of material can quickly accelerate the wear of a 

bearing and intensive vibrations are generated as a result 

of the repetitive impacts of the moving components on the 

defect. For instance, when a rolling element contacts a 

defect on the inner or outer raceway, it produces an impact 

which in turn excites the structural modes of the bearing 

and its support (W. Saadaui  et al,2011). 

 Bearing faults can be categorized into distributed and 

localized defects. Distributed defects affect a whole region 

and are difficult to characterize by distinct frequencies. In 

contrast, single-point defects are localized and can be 

classified according to following affected element (M. 

Blodt et al,2008): 

 Outer raceway defect. 

 Inner raceway defect. 

 Ball defect. 

A single-point defect could be imagined as a small hole, a 

pit, or a missing piece of material on the corresponding 

element. With each type of bearing fault, a characteristics 
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frequency fc can be associated. This frequency is 

equivalent to the periodicity by which an anomaly appears 

due to the existence of the fault. 

 The characteristics frequencies are functions of the 

bearing geometry and the mechanical rotor frequency fr. A 

detailed calculation of these frequencies can be found in 

(B. Li et al,2000). For the three considered fault types, fc 

takes the following expressions: 
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It has been statistically shown in (R. L. Schitlz et al,1990) 

that the vibration frequencies can be approximated for 

most bearings with between 6 and 12 balls by: 
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So that, the bearing fault frequency in the stator current is 

given by: 

    (      )                           (6) 

 

 
 

Fig.1 Structure and dimensions of bearings 

 

3. Theoretical Study: Load Torque Variations 

 

 
 

Fig. 2 Example of outer raceway defect 

 

Imaging for example a hole in the outer raceway: each 

time a ball passes in a hole (as shown in Fig. (2)), a 

mechanical resistance will appear when the ball tries to 

leave the hole. The consequence is a small increase of the 

load torque at each contact between the defect and another 

bearing element. 

Under a bearing fault, the load torque as a function of time 

can be described by a constant component TC  and an 

additional component varying at the characteristic 

frequency fc. The first term of the variable component’s 

Fourier series development is a cosine varying at 

frequency fc. For the sake of clarity, higher order terms are 

neglected in the following and only the fundamental term 

is considered. The load torque can therefore be described 

by (M. Blodt et al,2008): 
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Bearing faults have a direct impact on the torque of the 

machine and cause load torque oscillations. The effect of 

load torque oscillations on the q-component of the stator 

current has been studied in this paper. 

 

4. Discrete Wavelet Transform (DWT) 

 

DWT actually splits a signal to several band-limited 

signals, the sum of which is equal to the original one. In 

this way, the original signal can be reconstructed as a sum 

of n detail signals (        ) and an approximation 

signal (An). Each detail Dj includes frequency components   

[  (   )     
     ], while the approximation signal 

includes all the lower frequency components, including 

the dominant DC signal. More specifically, at each level of 

DWT decomposition, low-pass (g[n]) and high-pass (h[n]) 

filters are applied (I. Georgakopoulos et al,2010). 

 

5. Neural Network Structure 

 

The artificial neural networks are highly connected 

network of elementary processors running in parallel. 

Each elementary processor computes a single output based 

on information it receives. Two main elements constitute 

an artificial neural network: the neuron model used to 

build the network and then the network architecture. Each 

artificial neuron is an elementary processor that receives a 

number of neural inputs upstream (Z. M. Taibi et al,2011). 

 In ANN, two layers of neuron communicate via a 

weight connection network. The type of weighted 

connections used in this network is the feed-forward 

neural network, which composed by: (an input layer, one 

or more hidden layers, and an output layer). The 

mathematical model of neuron is presented by: 
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In this work, the structure of the neural network consists of 

an input layer that is fed by seven inputs (the RMS values 

of the wavelet coefficients (A6, D6, D5, D4, D3, D2, and 

D1)), an output layer and two hidden layers. The RMS 

value of the discrete signal S can be determined by  
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The neural network model is trained by using Levenberg- 
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Fig. 3 Induction motor simulation model 

 

Marquardt algorithm. The network has two outputs (1 for 

healthy motor and 0 for bearing fault). 

 

6. Proposed Method 

 

For study the bearing faults, a simulation model for the 

three-phase induction motor has been derived based on the 

mathematical model in a synchronously rotating reference 

frame using matlab/simulink. The simulink model 

implemented in this paper is shown in Fig.(3). It consists 

of conversion blocks and motor dq-model as follows:- 

 

A. abc-dq conversion 

 

To convert 3-phase voltage to voltages in the 2-phase 

synchronously rotating frame, they are first converted to 2-

phase stationary frame (,) and then from the stationary 

frame to the synchronously (dq) rotating frame. The 

transformation is given by the following equations [9,10]: 
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B. Motor dq-Model 

 

The dq-model of induction motor is represented according 

to the following equations: 
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C. dq-abc Conversion 

 

This conversion does the opposite of the abc-dq 

conversion for the current variables. 

 In the present work, DWT uses q-axis current (iqs) so 

as to identify bearing fault. Daubechies-44 wavelet (db44) 

has been used as a mother wavelet. The supply frequency 

in this paper is taken to be 50 Hz and table I shows the 

frequency level of the wavelet coefficients. 

 

Table 1 Frequency level of the wavelet coefficients. 

 

Level 
Frequency Band with   fS=5000 

samples/sec 

D1 1250-2500 Hz 

D2 625-1250 Hz 

D3 312.5-625 Hz 

D4 156.25-312.5 Hz 

D5 78.12-156.25 Hz 

D6 39.06-78.12 Hz 

A6 0-39.06 Hz 

 

 

7. Simulation Results  

 

The motor used in the simulation study is 1.1 KW, 220V, 

50Hz (see appendix), 2-pole induction motor. Fig. (4) 

shows the wavelet coefficients of (iqs) for healthy motor 

under transient conditions with full load (TC = 5N.m). 

Also, Fig. (5) shows the wavelet coefficients of (iqs) for 

bearing fault (outer raceway) case (with additional 

component of load torque TC =0.2TC). Speed, developed 

electromagnetic torque, and stator q-axis current 

component of induction motor for different cases are 

shown in Figs. (6-8), respectively. 
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Fig.4 Wavelet coefficients of stator q-axis current 

component for healthy machine with full load 

 

The RMS values of the wavelet coefficients for level 6 are 

then be used as the inputs of the neural network to give an 

output which identifies the machine case. Training data of 

all the input parameters (wavelet coefficients) are applied 

for obtaining the optimized architecture for the detection 

of bearing fault of an induction motor as shown in Fig. (9). 

The input data set are composed by a successive range of 

several examples in different operating conditions of the 

induction motor (no load , 5% load, 10% load,…, full 

load). In Fig. (9), the input data represent different 

operating cases of the induction motor: healthy (20 points) 

and bearing fault (40 points for outer and inner raceway 

faults). Thus, a total of 60 training points have been 

collected and useful for studying bearing faults. 

 Figs. (10) and (11) show the ANN output and error for 

healthy and bearing fault of an induction motor 

respectively. Fig. (10) describes that the output of the 

ANN from which the star one is the target value (either 0 

or 1 for healthy and bearing fault condition respectively) 

and the circle one is the  actual output of the ANN.  

 

 
Fig.5 Wavelet coefficients of stator q-axis current 

component for outer raceway bearing fault (Tc = 0.2Tc) 

at full load 
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From Fig. (10) it is clear that the ANN has well learned 

the input data and correctly produced the desired output. 

Hence, the error which is the difference between the target 

value and the actual output value is 1 e-8 which is shown 

in Fig. (11). 

 

 
Fig. 6 Speed of 3-ph I.M. for different types of bearing 

faults at full load 

 

 
Fig 7 Developed electromagnetic torque of 3-ph I.M. for 

different types of bearing faults at full load 

 

 
Fig.8  Stator q-axis current component of 3-ph I.M. for 

different types of bearing faults at full load 

 
Fig.9  Training data of induction motor (A6 RMS values)  

with bearings fault 

 

 
Fig.10 ANN output with bearing faults 

 
Fig.11 ANN error with bearing faults 

 

Conclusion 

 

This paper presents an effective method for bearing fault 

diagnosis of induction motor under transient conditions. 

Where, we carried out induction motor fault detection 

using DWT of the q-axis component of the stator current. 

Simulation results are developed by ANN which gives 

better identification of the motor state. 

 The good simulated results show that the proposed 

method allows an accurate diagnosis of the bearing fault 
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under different load and transient conditions. Future works 

are focus on different conditions for different faults of 

induction motor. 

 

Appendix 

 

Motor Parameters: 

Pn: 1.1KW, VS: 220V, f1: 50Hz 

P: 1, RS: 7.58Ω, Rr: 6.3Ω 

Lf: 26.5mH, Lm: 46.42mH 

J: 0.0054 kg m
2

 

 

Nomenclature  

 

Db ball diameter 

Dc cage diameter 

f1 supply frequency 

fc characteristics frequency 

fr mechanical rotor frequency 

fs sampling frequency 

ids,vds stator d-axis current and voltage 

idr,vdr rotor d-axis current and voltage 

iqs,vqs stator q-axis current and voltage 

iqr,vqr rotor q-axis current and voltage 

J inertia of motor 

Lf leakage inductance 

Lm mutual inductance 

Nb number of balls 

P pole number 

RS stator phase resistance 

Rr rotor phase resistance 

S  discrete signal 

TC constant torque 

Te electrical torque 

TL load torque 

s stator flux 

r rotor flux 

  transformation angle 

 contact angle 
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