

1114

Research Article

International Journal of Current Engineering and Technology
ISSN 2277 - 4106

 © 2013 INPRESSCO. All Rights Reserved.

Available at http://inpressco.com/category/ijcet

APIS to insert Content into an Open Source Web Radio System

Sajid M. Sheikh
*a

, Anselm Mathias
a
, Annah M. Jeffrey

a
 and Shedden Masupe

a

aDepartment of Electrical Engineering, University of Botswana, Gaborone, Botswana

Accepted 04 August 2013, Available online10 August 2013, Vol.3, No.3 (August 2013)

Abstract

Application developers can use APIs to integrate different functionalities into their application to access information and

data or insert content from other applications. Airtime is one of the most popular Open source radio management system

used. However, the Airtime application did not have any integration or automation facilities that could be used by

Third party and micro service providers. This research project was therefore aimed at developing codes/ APIs in order to

achieve this task. The paper presents developed APIs to insert content and data into an open source web radio system, in

order to allow any developer of micro services to have the possibility to easily use the Web Radio. A systematic

development process was followed in designing and creating the APIs. The Airtime application was installed on a local

Linux server using Apache, PostgreSQL and the Restler Framework. Data models were then defined for handling input

and output responses by the system and the API’s that were to be built. PHP code was written to address the tasks that

the APIs need to perform using the Restler Framework to provide REST based implementation and integration with the

Airtime application using the HTTP protocol. Testing was done using error codes. Where errors were encountered, the

PHP API codes were revisited and errors traced and modified until they performed the tasks they were designed for. By

reverse engineering the Postgre SQL database that supports the airtime application, suitable functions were designed

and then developed to meet the objectives of inserting content into an open source web radio. The API functions that

were created are track/download, track/upload, playlist/create, playlist/ edit, playlist/add track and playlist/remove

track. The developed APIs allow developers to upload their own tracks, media like interviews and news broadcasts to be

broadcasted on the radio. The APIs also allow developers to list the line-up of a show and change the playlist if

necessary. With the assistance of the Restler (Luracast) framework, Object Oriented PHP code and SQL, scripts were

successfully written and tested to provide the required functionalities.

Keywords: Airtime, API, Open Source, PHP, Radio, Restler, SQL, Web Radio.

1. Introduction

1
Application Programming Interfaces (APIs) are

commonly known as web services which are accessed via

hypertext transfer protocol (HTTP) from a web browser,

and executed on a remote system hosting the requested

services from an Application or other codes. A software

company releases its API to the public so that other

software developers can design products that are powered

by its service. For example, Google uses APIs for showing

weather reports, website visit statistics and many others.

Application developers can use APIs to integrate different

functionalities into their application to access information

and data, or insert content from other applications. An API

is a software-to-software interface and is not a Graphical

User Interface (GUI). APIs allow applications to

interconnect and thus create additional functionalities that

*Corresponding author Sajid M. Sheikh & Annah M. Jeffrey and

Shedden Masupe are working as Senior Lecturer; Anselm Mathias is a

BE final year student

are like frameworks that can be used by application

developers. Computer programmers promote automation,

either by use of scripts that run once

a specific event has occurred or developing multiple open

ended APIs that do a variety of tasks which are integrated

into a large range of products.

 Applications can be either open source or closed

source. Closed source softwares are developed by a single

person or company. Only the final product is made

available, while users don‟t have access to the source

code. Closed source software is normally copyrighted.

Open Source software on the other hand, is almost the

opposite as it is free to use (most), users have access to the

source code if they want to get it and they can modify and

make changes. Most open source projects are being

worked on by developers who do it for fun and in their

own time.

 Sharing code (open source-architecture) gives other

developers an opportunity to add more functionality to a

product, instead to spending time accomplishing a task

that is already done by someone else.

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1115

Radio is a traditional medium of mass communication and

the development of Web Radio brings traditional radio to

the digital era through access of Radio over the Internet

using web browsers. Technology and software advances

have resulted in automating many processes that were in

the past carried out manually. There are many Web Radio

Management Systems such as Airtime, Shoutcast,

ampache Firefly, Darwin Streaming Server, Sam

broadcaster, Dad by Enco, RCS and Audio Vault FleX.

Airtime is one of the most popular Open source radio

management system used. However, the Airtime

application did not have any intergration or automation

facilities that could be used by Third party and micro

service providers. This research project is therefore aimed

at developing codes/APIs in order to achieve this task.

Different API Architecture‟s were scrutinised to find a

suitable design that could be used in the development of

the APIs for the Airtime software.

 New content is generated and at an alarming rate and

old content is stored for future use. Thus it is vital that

such new information be added into the Radio broadcast

streams, especially crucial information such as news,

weather, etc. This task is very daunting if done manually

hence it is imperative that an application be created to

dynamically facilitate the addition of information. The

focus of this research was thus, to create APIs to insert

content into the Open Source Airtime Application.

2. Objectives

The goal of this research is to study and develop APIs to

insert content into the Airtime system in order to allow

any developer of micro service to have the possibility to

use a webradio. Any php programmer should be able to

use the php codes developed to interact with the web

radio.

 The envisioned implementation is such that the APIs

are to be built within the Airtime application, and should

be available only to developers that are authenticated by

the Emerginov platform. The developed APIs need to be

able to insert content into the Airtime Application from

outside the application. Developed APIs would have the

following functionalities

 Upload and download of tracks

This would allow developers to upload their own tracks,

media like interviews and news broadcasts to be

broadcasted on the radio. Further functionality can be

added such that this service would allow other developers

to download tracks in the form of podcasts.

 Create, Edit and remove playlists

This would allow the developers to list the line-up of a

show and change the playlist if necessary. The project

aimed at the implementation of the Architecture of the

APIs, the design of the APIs and testing of the APIs, in

order to provide APIs that can be used by and distributed

with the application. These APIs will allow developers to

integrate Airtime functionalities into their own

applications that are being developed.

3. Paper outline

Section 4 introduces a few online radio management

systems, while Section 5 gives a brief overview of the

research that was done on existing web radio APIs.

Section 6 gives an overview of the API framework and

guidelines that were studied. This section briefly presents

the main web application framework that were studied,

learned and used to code the APIs needed to provide the

required functionalities. Section 7 presents the

methodology that was followed to develop the APIs, as

well as the APIs development Life cycle. Section 8

presents data manipulation results using the specified

HTTP method call used for each service and the API

coding. Each service is broken down into a brief

description of what the service is supposed to do, followed

by the parameters that are required to process the request.

Section 9 presents the results from the testing that was

carried out. Discussion, future works and an overview of

the challenges encountered and achievements are in

Sections 10 and 11. References follow at the end of the

paper.

4. Online radio management systems

There are many open-source and closed source radio

management systems that are existing. This section briefly

presents a few such systems, namely: Campcaster,

Airtime, Shoutcast and Ampache. Other web radio

management systems not discussed here include

radiocommands, livewebdj.com, shoutcheap.com, Firefly,

Darwin Streaming Server, Sam broadcaster, Dad by Enco,

RCS and Audio Vault FleX.

A. Campcaster

Campcaster is an open source Radio Management system

application for live broadcasting, remote broadcast

automation (via web-based scheduler) and program

exchange between radio stations. In January 2011,

Sourcefabric (team that was working on the updates of

Campcaster) announced a rewrite of Campcaster. The new

product is called Airtime. It replaces the C++ scheduler of

Campcaster with Liquidsoap and includes a drag and drop

web interface based on jQuery.

B. Airtime

Airtime is a Linux based free open source radio

management system for remote broadcast automation (via

web-based scheduler) and program exchange between

radio stations. Airtime runs via the web, through a

browser, allowing for remote collaboration on radio

content. The latest version, 2.3 of Airtime supports 11

languages and allows for stations to localise Airtime

themselves. It is a very popular application is use by web

radio stations. Airtime generates audio streams using the

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1116

Liquidsoap stream-mixing framework, and can output the

results simultaneously to Icecast or Shoutcast servers or

through a sound card.

C. Shoutcast

Shoutcast has a radio directory of approximately more

than 48,000 radio stations from all around the world. The

company is owned by AOL. It develops and releases its

own shoutcast APIs to provide developers with more

advanced options for integrating music streaming services

into web services and mobile applications using RESTful

calls formatted in XML, JSON and RSS.

D. Ampache

Ampache is a web based audio/video streaming

application and file manager. It allows one to access their

music and videos using an internet enabled device.

Ampache's usefulness is heavily dependent on being able

to extract correct metadata from embedded tags in your

files and/or the filename. Ampache‟s down side is that it is

not a media organiser like Airtime .

5. Web radio APIs

Shoutcast, as mentioned in the previous section, creates its

own APIs to support its Radio Management System.

RadioReference.com provides a set of APIs for

webmasters and application developers to integrate data

from radioreference.com into their own products. There

are three different APIs currently available

 SOAP Based Web service for Radio Reference

Database Data

 Javascript Remote Render Service for Radio

Reference Database Data

 XML/JSON based Web service for the live audio feed

catalog.

Radio player API are also web radio APIs created to allow

web developers to incorporate the playback of licensed

Rdio music into their web applications. Rdio subscribers

and trial users will be able to hear full-length songs and

non-users will be able to hear music previews. They

consist of an Adobe Flash file (SWF) with simple

JavaScript and ActionScript 3 APIs. It can only be used in

compliance with the Rdio API terms and conditions.

Lastfm, another webradio has created APIs for paid up

members. These APIs require authentication to use them.

Once authenticated, one can tune the radio using the

radio.tune API method. An example of the syntax is

shown. This takes a station parameter that must

correspond to a last.fm protocol station url.

lastfm://<stationtype>/<resourcename>/<station-subtype>

6. API development framework and guidelines

A framework is a universal reusable software platform to

develop software or APIs. These include support

programs, compilers, codes, libraries, APIs and tool sets.

This section briefly presents the main web application

framework that were studied, learned and used to code the

APIs needed to provide the required functionalities. It is

necessary to understand the underlying systems that would

support the API, or specification/guidelines that the API‟s

would be built on. This purely means the protocol used for

information transfer, the architecture and finally the output

format that the API‟s would use.

A. HTTP Methods

The HyperText Transfer Protocol (HTTP) is also known

as RFC 2616 and was designed to enable communication

between clients and servers. HTTP uses verbs (methods)

to achieve a specific task or manipulate a specific

resource. Some of these verbs are GET, POST, PUT, and

DELETE.

 The actions performed by these verbs are based on

their name, where GET requests a resource from the server

and POST submits information to the server. The line

below is an example of GET that assigns "variable 1" the

value of "value1", and "variable 2" the value of "value2".

/test/form.asp?variable1=value1&variable2=value2

The same thing can be achieved using POST as shown in

the snippet code below

POST /test/form.asp HTTP/1.1

Host: localhost.com variable1=value1&variable2=value2

There are many formats in which the system can give an

output such as XML, JSON, plain text, and CSV. Thus, it

becomes very crucial to understand and select a suitable

output format. It should be noted that plain text and CSV

are not used in web-oriented architectures.

B. XML

Extensible Markup Language (XML) is a specific form of

writing text, which is defined by the World Wide Web

Consortium(W3C). It was designed to be easily

implemented and used with HTML; it was also designed

to be both human and machine-readable. XML has been

used as the core language in communication of different

protocols. XML uses tags – however, these tags are not

predefined. The tag is defined by either a person or the

automated machine.

C. JSON

JavaScript Object Notation is a text format that is designed

to be human readable and is used for interchange of data.

JSON is derived from and supported within Javascript,

while XML requires libraries to retrieve additional data.

JSON is also language independent. It was designed to be

minimal, portable, and textual.

 Through implementation and case studies, it was

realized that JSON is considerably faster as it uses less

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1117

resources, is easier to read and interpret by a human, and

generally, simpler to use than XML. It is crucial to

understand that the APIs sole purpose is to manipulate

data, where JSON fits more naturally as it is data-oriented

in design. Hence, JSON format was used to display the

output in this project.

D. SOAP-Based Web Service

Simple Object Access Protocol (SOAP) is a lightweight

protocol intended for exchanging structured information in

a decentralized, distributed environment. It makes use of

XML technologies, by mostly relying on the application

layer, and can be used over any transport protocol such as

TCP, HTTP, SMTP, or even MSMQ. Developed by a

group of vendors such as Microsoft, IBM, and Lotus,

SOAP became a W3C Recommendation on

24th June 2003 .

 At the core, SOAP defines a way to move XML

messages between two systems. The SOAP message

consists of a header element made up of header

information, a body element that contains call and

response information, and a fault element containing

errors and status information. The actual SOAP message is

shown in Figure 1.

Figure 1: Simple SOAP messaging

In SOAP, XML is used to provide an output that is

acquired from any script. SOAP provides flexibility such

that other protocols can be stacked over the HTTP, which

is used as the transportation protocol. The above

advantage can also pose as a security risk, as the SOAP

standard also does not have any in-built security facilities.

SOAP also has other problems, in terms that the service is

only one-way (from client to server), and that it is slower

than other technologies.

E. RESTful Web service

Representational State Transfer (REST) is a style of

software architecture for distributed hyper media systems

such as the World Wide Web. REST provides a set of

architectural constraints that, when applied as a whole,

emphasizes scalability of component interactions. A

general construct is shown in Figure 4. Roy Thomas

Fielding coined the term “Representational State

Transfer”, in his Doctorate dissertation entitled

“Architectural Styles and the Design of Network-based

Software Architectures”.

 An alternative way to distinguish and define REST

would be to say that it is a stateless server. Each request

from a client contains all the information necessary to

service the request, which clearly separates the clients and

servers.

Figure 2: REST Relationship diagram

REST clients can cache responses if allowed. There is a

direct interface between clients and server, and the client

can then request code from the server and execute it on

demand.

 REST has a loosely typed architecture, but uses nouns

and verbs to promote flexibility and usability. REST is not

restricted to parsing out only XML, it also uses less

bandwidth and provides error checking.

 In order for REST APIs to work, it should be able to

identify the resource e.g. by using the Universal Resource

Indicator (URI), and be able to manipulate the resource

through representation (i.e. modify or delete), using the

HTTP request of GET, POST, PUT, and DELETE.

REST‟s own flexibility can be a problem, as there is no

common accepted standard for REST, thus interoperability

between large systems might be a problem.

 By using the above architectures, it clearly

demonstrates how the system would get the data, and how

it would respond. By understanding the advantages and

disadvantages of each type of entity, the REST

architecture was selected, as it would perfectly fit the

scalability needs of the application.

F. Restler framework

There are many Frameworks that are designed for various

reasons and in different languages, such as Tonic, Restler,

Slim, FRAPI, Zend Framework just to name a few. From

these many options, the Restler framework was selected.

 This web-API framework provides easy deployment of

the REST architecture. It is prebuilt using different

applications to provide an inbuilt solution, thus avoiding

the re-writing of the code. It is very simple to use if object-

oriented programming of PHP is already understood.

Restler also supports different formats like JSON, XML,

yaml, amf and plist.

G. Emerginov platform

Emerginov is an open-source solution developed by

Orange Labs, which provides the opportunity to build

applications with the use of service such as SMS and

Voice. One such platform is located locally in Botswana,

for the encouragement of local industries to use, create

solutions, and nurture ideas in fields such as m-health and

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1118

agriculture. This platform was used to demonstrate the

capabilities of the APIs developed for this project .

H. Guidelines

In designing APIs there are no fixed rules, however, there

are the recommended practices that have been perfected

over the years of development by professionals. The

guidelines below have been used in the code design and

implementation.

 Structure - Normally APIs follow the standard design

procedure shown in the Figure 3

Figure3: Anatomy of API

 Versioning - It is very important to provide versioning

as it and helps in large scale development without

hindering older users. For example, Facebook

versions such as "?v=1.0"

 Status codes - Use of HTTP status codes to relevant

standard-based codes for errors. For example, Google

uses 200, 201, 304, 400, 401, 403, 404, 409, 410, 500.

Information that is provided by the server should be

as descriptive as possible, to relay any problems that

have occurred which needs to be rectified.

For example

{

“status”: 409

“property”: “name”,

“message”: “A directory named „ Avengers‟

already exists”,

“developerMessage”:”a directory named „Avenger‟

already exists. If you have a stale local cache, please expire it

now.”

“moreInfo”:www.checkitt.com/errors/31337

}

For the code designed, the inbuilt Restler error codes were

used.

 Authentications - Sessions are to be avoided

whenever possible and provide authentication for

every request if necessary. Existing protocol such as

Oauth 1.0a or Oauth2 or SSL are to be used. In this

project, the authentication is done by the Emerginov

platform.

7. Methodology

A. Web Radio APIs Development Cycle

Figure 4 below shows the systematic development process

that was followed in designing and creating the APIs. The

Airtime application was installed on a local Linux server

using Apache, PostgreSQL and the Restler Framework.

Data models were then define for handling input and

output responses by the system and the API‟s that were to

be built. PHP code was then written to address the tasks

that the APIs need to perform using the Restler

Framework, to provide REST based implementation and

integration with the Airtime application using the HTTP

protocol. The outputs created were in JSON format. As the

last phase of the cycle, testing was done using error codes.

Where errors were encountered, the PHP API codes were

revisited and errors traced and modified until they

performed the tasks they were designed for.

AIRTIME WEB RADIO

APPLICATION INSTALLATION

WITH RESTLER FRAMEWORK

SPECIFICATION AND DATA

MODEL FOR THE APIs

CODING USING PHP WITH

RESTLER FRAMEWORK

IMPLEMENTATION – PROVIDING

OUTPUT IN JSON FORMAT

TESTING THE APIs

Figure 4: Web Radio APIs Development Cycle

The Airtime application operates with a database running

to store all its data. The APIs were to be built by

manipulating the PostgreSQL Database on which the

application was built upon. Figure 5 shows the design of

the proposed Implementation. The APIs that needed to be

developed were to be built within the Airtime application,

and be available only to the developers that are

authenticated by the Emerginov platform. The final APIs

developed are only for developers. Users or listeners are

not aware of the coding and complexities and listeners will

only be able to access broadcast through Icecast.

B. AIRTIME Database Model

The manipulation of the application to develop the APIs is

done through the database. Thus, it is important to

understand the tables and the information each field holds.

The complete relational database is shown in Figure 6

presented at the end of this paper. The database has a

complex structure with a relational database structure

linking many primary keys from different tables. In order

to manipulate the data on the server side and create the

APIs, it is important to understand the relationship

between the tables found in the database. An SQL

http://www.checkitt.com/errors/31337

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1119

Figure 5: Design of proposed implementation

Figure 6: Relationships of table in the database

command that is used when changing data in one table

from the API codes is “JOIN”. This command ensures that

when data is changed in one table, the related table should

also be changed.

 For illustration purposes of the complexity of

the relational database and how it is used, the cc_ show

table is shown below. When a show in the Radio

Management system namely Airtime is updated, its details

are stored in the table labelled "cc_show" shown in Figure

6 below. This table contains information such as name of

the show, aesthetic information on how the show will look

like in the calendar and options for authenticating users

who would join into the live stream.

C. Proposed Error Codes

The error codes are important as they are a means to

provide insight into the inner workings of a code without

going through the code itself, in case a problem arises

from the use of the code. The most standardised error

messages were written for the HTTP, from which these

error codes were derived.

 Table 1 below describes all the errors codes and the

description associated with them, which were used in the

development of the APIs. These are few of the error codes

that are built into the Restler framework, that are going to

be used in the APIs.

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1120

Figure 7: Table cc_show

Table 1: Proposed use of errors

Error

Code
Error Text Description

200 Ok
This is when the request has been
successfully carried out.

201 Created
Resource has been successfully
modified.

400 Bad Request
The request cannot be fulfilled due to

bad syntax.

404 Not Found

The requested resource could not be

found but may be available again in the

future. Subsequent requests by the client are
permissible.

500
Internal
Server Error

This is when either a connection or query
has failed to get the required information.

8. Results

This section briefly shows the php coding developed to

create the required APIs to perform the required tasks.

Table 2 found at the end of this paper shows the inputs,

methods and outputs associated to an API function. The

output results contain the information that will be obtained

by the use of the specific API.

In order to produce the required results, object-oriented

programming of PHP had to be used by the use of classes.

The sample extracts of "index.php" are shown below. This

page is accessed through following

"http://localhost/apiv1/index.php" on the local machine

after deployment of Airtime. The "index.php" is the main

page where any site starts. As soon as the web server calls

on the "index.php" file, the Restler framework shown by

the snippet below was loaded.
 require_once '../vendor/restler.php';

use Luracast\Restler\Restler;

A new instance of the object Restler is created, and then

parses the data that is required for the class function to be

acted upon as shown below. This is how Restler is

controlled and works. The default format is XML, so

Restler has to be manually set to JSON format
$r = new Restler();

$r->setSupportedFormats('JsonFormat');

$r->addAPIClass('playlist');

The API then acquires the credential stored in the

"/etc/airtime/airtime.conf" file, required in connection to

the PostgreSQL database which is stored in an array called

“airtime_config” as shown below.
 $airtime_config =

parse_ini_file("/etc/airtime/airtime.conf");

The snippet below shows when a connection called

“dbconn” is established with the credentials acquired.
 $dbconn=

pg_connect("host=$airtime_config[host]

 dbname=$airtime_config[dbname]

user=$airtime_config[dbuser]

 password=$airtime_config[dbpass]");

Error checking is done on every stage; the code snippet

below is a condition that gets called in case the connection

to the database fails. This is very crucial as any tasks and

functions that are to follow will not work, and the web

server is forced to “exit” before parsing any other lines.
 if (!$dbconn) { // error if the connection

fails

 echo "An error occured connecting to

Database. \n";

 exit;

 }

One of the many other functions within the playlist class

below, is extracts of the create function. Its main purpose

is to make empty playlists which will later be filled with

media by using the addtrack and removetrack function‟s.

By default, Restler uses the GET HTTP method. If this has

to be changed to POST, the changes have to be done

manually by inserting the snippet below.
/* Manual Routing of some functions

* @param string $playlist_name

* @param string $playlist_description

 * @url POST create

*/

Just like the previous function mentioned, the create

function has two variables (namely playlist_name and

playlist_description), and the function continues only if

both these variables are set.

Functioncreate

($playlist_name=null,$playlist_description=null){

if(isset($playlist_name,$playlist_description)){

The SQL connection and the owner ID that is associated to

the APIs is then called in, as well as the current time

which is obtained in UTC format which the database uses.

The owner id is by default set to 1, which is the Admin

account. This is usually changed to a new user, which is

purely dedicated to the API usage. This new account is

crucial as this would assist in accountability.
global$dbconn;

global$owner_id;

$mtime=gmdate('Y-m-d H:i:s');//Getting time in UTC format

// the owner_id is set to 1 , which is the admin user, from

index.php

All these values are then inserted into the cc_playlist table,

and the relevant checks are carried out.

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1121

$result=pg_query($dbconn,"INSERT INTO cc_playlist

(name,mtime,utime,creator_id,description) VALUES

('$playlist_name','$mtime','$mtime','$owner_id','$playlist_des

cription') ");

if(!$result){// if the query fails

thrownewRestException(500,'Query has failed');

}

thrownewRestException(201);

}

else{

thrownewRestException(400,'required parameters not filled');

}

Since the APIs are web based, the APIs are run using a

standard web browser that can test the functionalities

provided by the newly build APIs. Such an example of

sending data is shown below that uses multiple and single

variables.

Example:
http://localhost/apiv1/playlist/search?playlist_name=test&playl

ist_description=new music
If multiple, the first variable starts with a "?" then the

variable name, followed by the assigned value. However,

the variables that follow start with the "&" sign.

 Another example, using a different function called

"details", which is in the same class as "playlist" but caters

for only one variable, has a slightly different structure as

shown in the Figure 8.

Figure 8: GET request for class playlist, and details

function and playlist_id

The sample response acquired by the client is shown in

Figure9.

Figure 9: JSON response of the playlist/details GET

request

This is how all the other classes and APIs work, but

having their own functionality.

9. Testing

The APIs created are web based and therefore, testing was

done using a web browser that can test the functionalities

provided by the newly build APIs. Testing is an important

phase in the development of any product. Below are

different tests carried out to find the durability of the

developed code and possibly rectify where it has it

shortfalls. The input value for playlist details is the playlist

ID, (which is an integer). So if a string is placed as shown

in Figure, an exception is thrown as shown in Figure

which shows an error "400". By referencing it to the

design, it means that a bad syntax has been used.

Figure 10: Variable testing

Figure 11: Error, Bad syntax

It is rare to find an internal error, but it has to be catered

for. Table 3 has summarized values of the results that were

obtained under testing

10. Discussion and future work

The development of APIs had started on Airtime version

2.2 in October 2012, and most functions were then built.

Earlier in the year (2013), version 2.3 of the Airtime

application was released. When the new update was

installed, it was realized that some functions failed to work

completely, and as such the API development had to

restarte in relation to a few functions that were updated in

the new version. Thus, the Application updates have an

effect on the running of the APIs. The APIs have been

developed using the current Database structure and

Application of Airtime 2.3. Updates to the application may

require minor changes to the php code to work with the

new updates.

 The Airtime application used in this research is an

Open Source application. Most open source applications

are developed by people who do it for fun and in their own

time and there is no guarantee to find documentation on

the application and its coding. Thus, access to explanation

of the codes can become a challenge with some open

source applications. The main problem encountered in this

research was the lack of documentation associated with

the technical design of the application, as most developers

add functionality without providing the technical

documentation of the design procedure, since it is not a

key requirement.

 Reverse Engineering of the application was carried to

understand the code and out to find out what their

functions are, where and how they are used, the security,

and the validations associated with it. Developing APIs for

open source applications without documentation for their

codes and database can be challenging.

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1122

Table 2: Inputs, methods and outputs associated to an Api function

API name

Description Parameters Parameters

Type

HTTP

Method

Output results contents

Track/

download

this method allows the developer to

download a media file from the server , The

below method are completely based on
knowing the track id, and the files if

imported are stored as

/SRV/AIRTIME/<owner_id>/<artist>/<albu
m-name>/<track-number>-<track-name>

Track_id. Required GET meda file.

Track/

Upload

This feature assists the developers to upload

tracks to the server. File has to be in right

format (wav, flac, ogg, mp3,acc). Maximum
upload size by default is 500 MB.

File Required POST System

response

Playlist/

create

This method creates a new playlist Playlist_name

Playlist_Description

Required POST OK. (System

response)

Playlist/

edit

This is to assist the developer to modify a

specify playlist
Playlist_id Required POST OK. (System

response)

Playlist_name

Playlist_Description

Optional

Playlist/

addtrack

this should help the developer add a specific
track into a playlist

playlist_id

track_id

position

Required POST OK. (System
response)

Playlist/

removetrack

this should help the developer remove a
specific track into a playlist

playlist_id,

file_id

Required POST OK. (System
response)

Table 3: Summarized outcome of testing

Class/
Tested Variable /Type Input type Input value

Expected

Response

Response

acquired function

File/ track_id/integer Integer 20 Pass pass

download track_id/integer String twenty Fail fail

File/
url /String String http://localhost/test.mp3 Pass pass

upload

Playlist/ playlist_name String Mixtape Pass Pass

create playlist_description /String String nice music Pass Pass

Playlist/ Playlist_id /integer Integer 5 Pass pass

edit Playlist_id /integer String New Fail Fail

 playlist_name /String String Mixtaped Pass Pass

 playlist_description /String String nice music collection Pass Pass

Playlist/ Playlist_id /integer Integer 5 Pass pass

addtrack Playlist_id /integer String New Fail Fail

 track_id / Integer Integer 5 Pass pass

 track_id / Integer String New Fail Fail

 Position / Integer Integer 5 Pass pass

 Position / Integer String New Fail Fail

Playlist/ playlist_id / Integer Integer 5 Pass pass

removetrack playlist_id / string String New Fail Fail

 track_id /integer Integer 5 Pass pass

 track_id /integer String New Fail Fail

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1123

The APIs functionalities developed for this Radio

Management System called Airtime are not exhaustive,

and many more functionalities can further be developed.

Future work can be further carried out by other developers

to diversify the functionalities provided by the API, and to

add other functions that were not catered for. APIs can

also be developed for Web Radio Management Systems

such as Campcaster.

Conclusion

The APIs created are completely open source and can be

used by developers to add Airtime functionalities into their

own Applications that are being developed. The developed

APIs will give external developers the opportunity to

access the application without having to physically login,

but having valid platform credentials.

 The many APIs coded have various functions, where

an API to upload and download media files were also

developed called "file/download" and "file/upload". An

API was also developed to create new playlists, add and

remove media track with automatic positioning of the

track by using "playlist/create", "playlslit/addtrack",

"playlist/removetrack".

 An implementation area for use of the developed APIs

is in creating a solution called “Breaking News", which is

to be deployed with the use of the Emerginov Platform.

With this system, customers are given a deadline to call in

before an allocated time, and then report news on a

specific mobile number. This could be either by voice call

or as SMS text, which will then be converted on the

Emerginov platform using the Google Text-to-Voice API.

These audio files will be stored in a media folder, and the

APIs written can then be called to automatically load all

these mp3 files into a radio playlist and integrate into a

show. Once in, the radio can automatically broadcast.

Acknowledgments

The Authors will like to thank the people at Orange Labs

namely Arnaud Morin and Morgan Richomme for the

guidance they have shown with the API coding and the

use of the Emerginov Platform. The Authors will also like

to thank the community namely from “Stackoverflow” and

“sourcefabric” in assisting when issues with the code were

encountered.

References

Software & Information Industry Association. (2001, February).

Software as a Service: Strategic Backgrounder. Retrieved

February 28, 2013, from Software & Information Industry

Association: http://www.siia.net/estore/pubs/SSB-01.pdf

How to Leverage an API for Conferencing. (n.d.). Retrieved

April 26, 2013, from How stuff works:

http://money.howstuffworks.com/business-communications/

how-to-leverage-an-api-for conferencing3.htm

Online webpage: Open vs. Closed Source Software, retrieved on

10 June 2013, http:// scienceinafrica. com/ old/

index.php?q=2004/january/ software. htm

Online webpage: Open Source versus Closed Source, retrieved

on 10 June 2013, http://mongers.org/open-vs-closed

Online webpage, retrieved on 10 June 2013, http://

en.wikipedia.org/ wiki/ Campcaster

Online webpage, retrieved on 10 June 2013, http:// en.

wikipedia.org/wiki/ Airtime

Online webpage, retrieved on 10 June 2013, http://

lwn.net/Articles/ 481607/

Online webpage, retrieved on 10 June 2013, http:// www.

shoutcast.com/

Online webpage, retrieved on 10 June 2013, http://

blog.programmableweb.com/2012/01/26/50000-radio-stations-

in-one-api/

Online webpage, retrieved on 10 June 2013, http://ampache.org/

Online webpage, retrieved on 10 June 2013,

http://wiki.radioreference.com/index.php/API

Online webpage, retrieved on 10 June 2013,

http://developer.rdio.com/docs/Web_Playback_API

Online webpage, retrieved on 10 June 2013,

http://www.last.fm/api/radio

R. F. (1999). Hypertext Transfer Protocol -- HTTP/1.1 .

Retrieved April 12, 2013, from world Wide web

consortium:http://www.w3.org/Protocols/rfc2616/rfc2616.htm

l

Extensible Markup Language (XML) 1.0 (Fifth Edition). (2008,

November 26). Retrieved April 4, 2013, from world wide web

consortium: http://www.w3.org/ TR/REC-xml/

Nurzhan Nurseitov, M. P. Comparison of JSON and XML Data

Interchange Formats: A Case Study.

drrwebber. (2013, April 26). Analysis of JSON use cases

compared to XML. Retrieved May 12, 2013, from Oracle

blogs: https:// blogs. oracle.com/

xmlorb/entry/analysis_of_json_use_ cases

W3G Recommendations (2007, April 27). SOAP Version 1.2

Part 1: Messaging Framework (Second Edition). Retrieved

January 23, 2013, from World Wide Web Consortium:

http://www.w3.org/TR/soap12-part1/#intro

Kyrnin, J. (n.d.). web design /HTML . Retrieved December 29,

2012, from About.com:

http://webdesign.about.com/od/soap/a/what-is-xml-soap.ht

SOAP Introduction. (n.d.). Retrieved march 12, 2013, from

w3schools.com: http:// www.w3schools.com/

soap/soap_intro.asp

Skonnard, A. (2003, march). Understanding SOAP. Retrieved

January 18, 2013, from MSDN: http://msdn.microsoft.com/en-

us/library/ms995800.asp

The Advantages and Disadvantages of Using SOAP Messages.

(n.d.). Retrieved Feburary 23, 2013, from xyzws:

http://www.xyzws.com/ scdjws/studyguide/ soap_chapter8.

Html

Fielding, R. T. (2000). Architectural Styles and the Design of

Network-based Software Architectures. Retrieved October 21,

2012, from http://www.ics.uci.edu/~

fielding/pubs/dissertation/rest_arch_style.htm

Olson, M. (2002, July 03). The Python Web services developer:

Messaging technologies compared. Retrieved march 15, 2013,

from IBM Developer Works:

http://www.ibm.com/developerworks/library/ws-pyth9/

Elkstein, D. M. (n.d.). Rest Server Responses. Retrieved January

12, 2012, from Learn REST: A Tutorial:

http://rest.elkstein.org/2008/02/rest-server-responses.html

Oracle. (n.d.). Web Services: REST vs. SOAP. Retrieved

Feburary 18, 2013, from Milan's blog by Oracle:

https://blogs.oracle.com/milan/entry/web_services_rest_vs_so

ap

SOAP vs. REST. (2010, January 15). Retrieved March 12, 2013,

http://www.siia.net/estore/pubs/SSB-01.pdf
http://money.howstuffworks.com/business-communications/%20how-to-leverage-an-api-for%20conferencing3.htm
http://money.howstuffworks.com/business-communications/%20how-to-leverage-an-api-for%20conferencing3.htm
http://mongers.org/open-vs-closed
http://ampache.org/
http://wiki.radioreference.com/index.php/API
http://www.last.fm/api/radio
http://www.w3.org/%20TR/REC-xml/
http://www.w3.org/TR/soap12-part1/#intro
http://webdesign.about.com/od/soap/a/what-is-xml-soap.ht
http://www.w3schools.com/
http://msdn.microsoft.com/en-us/library/ms995800.asp
http://msdn.microsoft.com/en-us/library/ms995800.asp
http://www.xyzws.com/
http://www.ics.uci.edu/~
http://www.ibm.com/developerworks/library/ws-pyth9/
http://rest.elkstein.org/2008/02/rest-server-responses.html
https://blogs.oracle.com/milan/entry/web_services_rest_vs_soap
https://blogs.oracle.com/milan/entry/web_services_rest_vs_soap

Sajid M. Sheikh et al International Journal of Current Engineering and Technology, Vol.3, No.3 (August 2013)

1124

from spf13: http://spf13.com/post/soap-vs-res

 Huppo. (2011, june). Compare and contrast REST and SOAP

web services. Retrieved march 14, 2013, from

stackoverflow:http://stackoverflow.com/questions/10975863/c

ompare-and-contrast-rest-and-soap-web-services

Lane, K. (2011, Septmeber 23). Short List of RESTful API

Frameworks for PHP. Retrieved March 14, 2013, from

Programmableweb:http://blog.programmableweb.com/2011/09

/23/short-list-of-restful-api-frameworks-for-php/

Orange. (2012, December 04). Emerginov, an innovative

solution for mobile services development in Africa. Retrieved

February 19, 2013, from Orange news:

 http://www.orange.com/en/news/2012/novembre/Emerginov-

an-innovative-solution-for-mobile-services-development-in-

Africa

Orange. (n.d.). About. Retrieved February 19, 2013, from

Emerginov: http://www.emerginov.org/about.php

Jansen, G. (2011). The Job of the API Designer. Retrieved

January 19, 2013, from Restful API design: https://restful-api

design. readthedocs. org/en/latest/ scope. Html

Mathias A., Sheikh S.M., Jeffrey A.M and Masupe S. (July

2013) APIs to extract information from an existing web radio

application. International Journal of Electronics and

Communication, Vol. 2, Issue 3, pp. 117-132.

http://spf13.com/post/soap-vs-res
http://www.orange.com/en/news/2012/novembre/Emerginov-an-innovative-solution-for-mobile-services-development-in-Afric
http://www.orange.com/en/news/2012/novembre/Emerginov-an-innovative-solution-for-mobile-services-development-in-Afric
http://www.orange.com/en/news/2012/novembre/Emerginov-an-innovative-solution-for-mobile-services-development-in-Afric
http://www.emerginov.org/about.php
https://restful-api/

