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Abstract 

  

Graph theory is used for finding communities in networks. Graphs are used as device for modeling and description of 

real world network systems such are: transport, water, electricity, internet, work operations schemes in the process of 

production, construction, etc. Although the content of these schemes differ among themselves, but they have also common 

features and reflect certain items that are in the relation between each other. So in the scheme of transport network might 

be considered manufacturing centers, and roads and rail links connected directly to those centers. In this paper is 

designed the solution for an practical problem to find a Minimum Spanning Tree by using Kruskal algorithm and graph 

search Dijkstra’s  Algorithm to find the shortest path between two points,  Also, for this case was developed a network 

model of the transportation problem which is analyzed in detail to minimize shipment costs. 
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1. Introduction to Graph Theory 

 
1
Graph theory provides many useful applications in 

Operations Research. A graph is defined as a finite 

number of points (known as nodes or vertices) connected 

by lines (known as edges or arcs). In this paper for a given 

graph find a minimum cost to find the shortest path 

between two points. 

 

 
 

Figure 1 Connected Graph 

 

There are different path options to reach from node A to 

node B, but our aim is to find the shortest path with a 

minimum transportation costs, this requires a lot efforts. 

                                                           

 
 

Figure 2 Some of the path options 

 

2. Minimum spanning tree by using Kruskal Algorithm 

 

 
 

Figure 3 
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In this paper the Minimum Spanning tree for the given 

case is described by several figures given in the following.  

Firstly are used all nodes of the given graph without 

arches, then we will start to put arcs in their place starting 

from the lowest cost (arc length 1) to the one with higher 

costs, but having in mind not to create cycles (Figure 3). 

This process continues by placing the second arc of length 

2 (Figure 4). 

 

 
 Figure 4 

 

Arch of lower cost that comes after him with units 1 and 2 

is the arc of length 3. Again we have processed in the 

same way having in mind that we should not create cycles 

(Figure 5). 

 
Figure 5 

 

 
Figure 6 

 

Applying this rule to all arches of the given Graph given, 

we have gained a minimum Spanning tree which is given 

in Figure 7.  Arches which are removed from the graph are 

denoted by red color, this happened because, because their 

deployment create cycles Figure 7.  

 
Figure 7 

 

3. Minimum cost path 

 

From the Minimum Spanning Tree shown in Figure 6 we 

are able to find the minimum cost path (trajectory) from 

node A to node B. As we can see from the Figure 7, there 

are two alternative ways to reach from node A to node B, 

which are distinguished by dash line.  

 

 
Figure 8 

 

Let’s start with first option to calculate the distance from 

node A to node B (dash line), the result is as follows: 

µ = 2+3+6+7+4+5+2+5+4+3+6+17 = 64 units (this is the 

most expensive path) 

For the second option (full line): 

µ = 3+1+11+7+2 = 24 units 

This means that the second option represents the minimum 

cost path from node A to node B.  

 

4.  DIJKSTRA’s Algorithm 

 

By using Dijkstra’s Algorithm we are able to find the 

shortest distances (length of arc) from a node to all other 

nodes. Firstly, we start from the node A, which is chosen 

as permanent node. Analyzing the distances of the 

neighborhoods nodes of the node A, we are able to find 

the shortest path to node 2 (its distance is equal with 2). 

Afterwards node 2 is chosen as permanent node, and we 

have to check after the distances from node 2 to the 

neighbor nodes. To the each neighbor node is added the 

length of the permanent node 
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Figure 9 Minimum path 

 

  
 

Figure 10 Minimum path 

 

Now is chosen the minimum distance from node A. 

Minimum distance is chosen as permanent node, since the 

3+2 distance is shorter than 7, this means that distance 7 is 

not going to be considered anymore and we have to use 

the distance 5.  

  
 

Figure 11 Minimum path 

 

Now is chosen the minimum distance from node A. For 

this case the permanent node is chosen the minimum 

distance 4, this means that to all neighbor node is added 

the distance of permanent node.  

 
Figure 12 Minimum path 

 

This process is repeated for each node respectively. 

   

 
Figure 13 

 

 
Figure 14 

 

 
Figure 15 
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Figure 16 

 

For example, for the permanent node 6 by adding 

distances 6+8=14, is shown that 14 > 9, this means that the 

previous distance 9 remains, while the distance 14 is not 

considered anymore.  This means that node 9 is chosen as 

permanent node and the procedure is similar to the 

previous cases.  

 

  
Figure 17  

  
Figure 18 

  
Figure 19 

 
Figure 20 

 

 
Figure 21 

 

 
Figure 22 

  

5. Minimum path between nodes A and B  

 

Let’s find the shortest path from node A to node B; this is 

done starting from the node B, by substituting from this 

node the distance for each neighbor node.  

 
 

Figure 23 
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Figure 24 

 

  
Figure 25 

 

   
Figure 26 

 

  
Figure 27 

 

 

 

 

 

 
Figure 28 Minimum cost path from node A to node B 

 

Conclusions 

 

Dijkstra's Algorithm will find the shortest path between 

two nodes/vertices. Kruskal's algorithm will find the 

minimum spanning tree connecting all the given vertices.  

Basically, Dijkstra's will find a connection between two 

vertices, while Kruskal's will find a connection between 

and number of vertices. 

     The results which are obtained for the given example 

shows that Dijkstra’s Algorithm is very effective tool to 

find the path with lowest cost from node A to node B. 

Same results have been obtained also for Minimum 

Spanning Tree by using Kruskal algorithm, but this case 

the procedure is much simpler with a minimum spanning 

tree to reach node B from node A with the lowest total 

cost. We have tried also to find the worst scenario to reach 

node B from node A which is approximately 63% more 

expensive from the first case.  

 

References 

 
Likaj, R. (2009), The problem of transport in designing the 

production systems, pages 175-180, MITIP, Bergamo, Italy. 

Likaj, R. (2010), Sensitivity analysis in designing the production 

systems and economic interpretation, MOTSTP, International 

Scientific Conference Management of Technology, Zagreb 

Croatia. 

Chamero, Juan. (2006), Dijkstra’s Algorithm As a Dynamic 

Programming strategy, www.intag.org 

Rutter, Sh., (2009), Dijkstra Algorithm final project EDUC 528 

from http://shawnrutter.com/pdf/Dijkstra_Algo.pdf   

Lee, D.C. (2006), Proof of a modified Dijkstra's algorithm for 

computing shortest bundle delay in networks with 

deterministically time-varying links, pages 734 – 736, 

Communications Letters, IEEE  

Wen-Chih Chang, Yan-Da Chiu, Mao-Fan Li, (2008), Learning 

Kruskal's Algorithm, Prim's Algorithm and Dijkstra's 

Algorithm by Board Game, Pages 275 – 284, Springer-Verlag 

Berlin, Heidelberg 


