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Abstract 

  

A three-dimensional finite element model is developed and solved for the micromechanical prediction of Young’s modulii 
and Poisson’s ratios of an hybrid FRP lamina consisting of two different fiber materials (T-300 & S-Glass) embedded in 
a thermosetting  polymer matrix. The finite element model of representative volume element of hexagonal pattern is 
generated in ANSYS software. The cross-section of each fiber is taken as ellipse. The effect of fiber volume fraction and 
ellipse aspect ratio on the predicted mechanical properties is discussed. 
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1. Introduction 

 
1
A hybrid composite consists of two or more types of 

reinforcing fibers in one or more types of matrices. By 
hybridizing two or more types of fiber in a matrix allows a 
closer tailoring of composite properties to satisfy specific 
requirements compared with composites with only a single 
type of fiber. Modeling of composites made up of 
inclusions embedded in a matrix has been a subject of 

interest of many researchers in the past half-century. 
Noteworthy among the earlier models are the works of  
(Eshelby, 1957), (Hashin,1962), (Hill,1963&1965), 
(Hashin and Shtrikman, 1963), (Hashin and Rosen, 1964). 
(Hashin and Shtrikman, 1963) used Variational principles 
to obtain upper and lower bounds for the effective elastic 

moduli as well as the effective electrical and thermal 
conductivities of multiphase composites with quasi-
isotropic global characteristics. Later on, (Milton, 
1981&1982) obtained higher-order bounds for the elastic, 
electromagnetic, and transport properties of two-
component macroscopically homogenous and isotropic 

composites given the properties of the individual 
constituents. More recently, (Drugan and Willis, 1996) 
and (Drugan, 2003), employed the Hashin–Shtrikman 
variational principles to analyze two-phase composites 
with random microstructure. A numerical implementation 
of this work was carried out by (Segurado and Llorca, 

2002). Other significant early results can be found in the 
work of  (Budiansky, 1965), (Russel, 1973). (Mori and 
Tanaka, 1973) in their micromechanical approach obtained 
closed-form expressions for the elastic properties of two-
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phase composites. (Ying Shan and Kin Liao, 2002) 
proposed a simple life prediction model for the hybrid 
composite.  

    The present research work deals with the analysis of 
micromechanical behaviour of unidirectional continuous 
hybrid elliptical fiber-reinforced composite by three-
dimensional elasticity theory based finite element method. 
The analysis includes prediction of modulii and Poisson’s 
ratios of the hybrid lamina subjected to longitudinal, in-

plane transverse and out-of-plane transverse loads. 
 
2. Methodology 

 

The unidirectional continuous fiber reinforced composite 
lamina has been idealized as a large array of representative 

volume elements. Depending upon the arrangement of the 
fibers across the cross section of the lamina, different 
types of representative volume elements can be obtained 
such as square, hexagonal, staggered square patterns etc. 
In any pattern repetition of a particular volume of the 
lamina can be observed, which is called the representative 

volume element (RVE) or unit cell. 
 

2.1 Hexagonal Array of Unit Cells 
 
A schematic diagram of the unidirectional fiber composite 
is shown in Fig.1 where the fibers are arranged in the 

hexagonal array. It is assumed that the fiber and matrix 
materials are linearly elastic. A unit cell is adopted for the 
analysis. The cross sectional area of the fiber relative to 
the total cross sectional area of the unit cell is a measure of 
the volume of fiber relative to the total volume of the 
composite. This fraction is an important parameter in 
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composite materials and is called fiber volume fraction 
(Vf).  
 

 
 
Fig. 1 Hybrid composite lamina 
 
The isolated unit cell behaves as a part of large array of 

unit cells by satisfying the conditions that the boundaries 
of the isolated unit cell remain plane. It is assumed that the 
geometry, material and loading of unit cell are symmetric 
with respect to 1-2-3 coordinate system (1- is longitudinal 
direction of the fiber). Therefore, a one-eighth portion of 
the unit cell is modeled for the present work. 

 
2.2 Finite Element Model 
 
The element used for the present analysis is SOLID 95 of 
(ANSYS,2008), which is developed, based on three-
dimensional elasticity theory and is defined by 20 nodes 

having three degrees of freedom at each node: translation 
in the node x, y and z directions. Finite element meshing 
of one eighth portion of the unit cell (i.e. one quarter in the 
cross section and one-half in the longitudinal direction of 
the fiber) is shown in Fig. 2. The dimensions of FE model 
are taken as 50, 86.6 and 10 units in x- y- and z- directions 

respectively. The dimensions of ellipse are obtained 
according to the fiber volume fraction and the ellipse 
aspect ratio (‘a’= axis length in 3-direction by axis length 
in 2-direction). 
 
2.3 Boundary Conditions and Loading 

 
The loading, boundary conditions and other multipoint 
constraints are applied in such a way that the faces of the 
FE model remain plane during and after deformation. i) 
Uni-axial state of stress of 1MPa is applied in longitudinal 
direction of the fiber for the prediction of E1, ν12 and ν13 

respectively, ii) E2, ν21 and ν23 are obtained from in-plane 
transverse load and iii) E3, ν31 and ν32 from out-of-plane 
transverse load. 
 
2.4 Materials 
 

The arrangement of fibers in hybrid composite is as shown 
in Fig. 2. The mechanical properties of the constituent 
materials used in the present analysis are given in Table 1. 

Table 1. Mechanical properties of the constituent materials 
 

Property 
T-300 
fiber 

S-Glass 
fiber 

HM Polymer 
Matrix 

E1 (GPa) 220.6 85.5 5.17 

E2 (GPa) 13.79 85.5 5.17 

E3 (GPa) 13.79 85.5 5.17 

ν12 0.2 0.2 0.35 

ν23 0.25 0.2 0.35 

ν13 0.2 0.2 0.35 

G12 (GPa) 8.96 35.62 1.91 

G23 (GPa) 4.83 35.62 1.91 

G13 (GPa) 8.96 35.62 1.91 

 

 
 

Fig. 2 FE mesh on one-eighth portion of the unit cell  (one 
quarter in cross section and half in length direction) 
 
3.0 Results 

 

The finite element software ANSYS is successfully 
executed for the analysis. The elastic properties are 
evaluated using the normal strains in 1, 2 and 3 directions 
calculated from the normal deformations of the unit cell 
obtained from finite element analysis. The displacements 
in x, y and z directions, Ux, U y and Uz respectively of the 

finite element model are obtained from the finite element 
solutions. The corresponding normal strains are 
determined from the displacements. The longitudinal 
Young’s moduli and Poisson’s ratios due to the 
longitudinal load are determined from the following 
expressions 

 
 E1=σ1/ε1     ν12= - ε2/ ε1      ν13= - ε3/ ε1 

where 1(z), 2(x) and 3(y) are longitudinal, in-plane 
transverse and out-of-plane transverse directions 
respectively of the composite lamina. Remaining 
properties are obtained in similar fashion for in-plane and 

out-of-plane transverse loads. The results are obtained for 
hybrid lamina consisting of T-300 fiber, S-Glass fiber and 
Epoxy matrix. In this case the volume of both the fibers is 
taken equally.  



V. Srinivasa Sai et al                                                                  International Journal of Current Engineering and Technology, Vol.3, No.1 (March 2013) 
   

104 
 

3.1 Validation 
 
The finite Element model is validated for the longitudinal 
Young’s modulus using Rule of Mixtures (ROM). The 

results are presented in the Table 2. A very close 
agreement is observed between the FE and analytical 
results. 
 
Table 2 Validation of E1 

 

Vf E1 (ROM) E1 (FEM) % Variation 

0.10 19.958 19.974 0.080168 

0.20 34.746 34.771 0.071951 

0.30 49.534 49.569 0.070659 

0.40 64.322 64.361 0.060632 

0.50 79.11 79.148 0.048034 

0.60 93.898 93.939 0.043664 

0.70 108.686 108.726 0.036803 

 

Fig. 3 shows the variation of E1 with respective to the fiber 
volume fraction (Vf) for the values of ‘a’ ranging from 0.5 
to 1.5 as represented in legend. As the volume fraction 
increases, the range of ‘a’ decreases and ‘a’=1 (circle) 
beyond Vf=0.75. From Fig. 3 it is observed that E1 of the 
lamina is increasing with respective Vf in a linear manner 

but no variation due to aspect ratio ‘a’. This is true since 
rule of mixtures uses cross-sectional area of the fiber but 
not the shape of the fiber. 
     Figs. 4 and 5 show the variation of ν12 and ν13 with 
respective to Vf for the stated values of ‘a’. It is found that 
both the Poisson’s ratios decreases with increase in Vf . A  

decreasing trend of ν12 is observed with respect to ‘a’ and 
ν13 is increasing with ‘a’. Increase in Vf increases resistant 
of the material in all the directions but in the transverse 
directions the action of the matrix is more and therefore 
the rate of increase in resistance of the material in  
 

 
 
 
 
 
 

 
 
 
 
 
 

 

transverse directions is less when compared to the 
longitudinal direction, as a result the Poisson’s ratio’s ν12 

and ν13  are decreasing  with respective Vf . Same reason 
can be attributed for the variation of these Poisson’s ratios 

with respect to ‘a’. 
    Figs. 6 and 7 show the variation of E2 and E3with 
respect to Vf and ‘a’. It is observed that E2 increases with 
Vf and ‘a’ where as E3 increases with Vf but decreases 
with ‘a’. At lower Vf, there is no significant variation of E2 
and E3 with ‘a’ and they vary at larger rate at higher Vf. 

increase in Vf reduces the gap between fiber to fiber 
resulting in increase of stiffness of composite. This effect 
increases in 2-direction with increase in ‘a’ but decreases 
in 3-direction causing for reduction of E3. Rate of variation 
of E2 is more when compared to E3 with respect to ‘a’. 
This is due to the reason that in 3-direction, though the gap 

between fibers increases, the stiffness is not affected that 
much due to overlapping of fibers and elimination of 
clearance between fibers in an RVE in 2-direction. 
    Figs. 8 and 9 show the variation of minor Poisson’s 
ratios ν21 and ν31 with respect to Vf and ‘a’. ν21 decreases 
up to certain value of Vf depending up on ‘a’ and later 

increases. ν31 decreases continuously. ν21 increases with ‘a’ 
at higher Vf  but there is no significant variation of ν31 with 
‘a’. The reasons discussed for the variation E2 and E3 are 
applicable for these cases also.  
    Figs. 10 and 11 show the variation of transverse 
Poisson’s ratios ν23 and ν32 with respect to Vf and ‘a’. ν23 

increases up to certain value of Vf depending up on ‘a’ and 
later decreases. ν32 decreases continuously except at lower 
values of ‘a’ where its variation is similar to that of ν23. 
There is no uniform trend of ν23 with respect to ‘a’ but 
there is a decreasing trend in ν32 with respect to ‘a’ which 
is drastic at higher Vf . These variations are resulting from 

the change in stiffness of composite in one transverse 
direction due to load in other transverse direction.  
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 

Fig. 3 Variation of E1 with respect to Vf for different ‘a’ 
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Fig. 3 Variation of E1 with respect to Vf for different ‘a’ 
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Fig. 4 Variation of ν12 with respect to Vf for different ‘a’ 

 

Fig. 5 Variation of ν13 with respect to Vf  for different ‘a’ 

 

 

Fig. 6 Variation of E2 with respect to Vf for different ‘a’ 

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90

ν
1

2
 

Vf (%) 

0.500

0.750

1.000

1.250

1.500

0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90

ν
1

3
 

Vf (%) 

0.500

0.750

1.000

1.250

1.500

0

10

20

30

40

50

10 20 30 40 50 60 70 80 90

E
2
 (

G
P

a
) 

Vf (%) 

0.500

0.750

1.000

1.250

1.500

‘a’ 

‘a’ 

‘a’ 



V. Srinivasa Sai et al                                                                  International Journal of Current Engineering and Technology, Vol.3, No.1 (March 2013) 
   

106 
 

 

Fig. 7 Variation of E3 with respect to Vf for different ‘a’ 

 

Fig. 8 Variation of ν21 with respect to Vf for different ‘a’ 

 

 

Fig. 9 Variation of ν31 with respect to Vf for different ‘a’ 
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Fig. 10 Variation of ν23 with respect to Vf for different ‘a’ 

 

Fig. 11 Variation of ν32 with respect to Vf for different ‘a’ 

Conclusions 

 
Mechanical properties such as Young’s modulus and 
Poisson’s ratios are predicted by applying 3-D finite 
element method to solve an hexagonal RVE of an hybrid 
FRP composite consisting of T-300 and S-Glass fibers in a 
polymer matrix. The influence of fiber content and fiber 

cross-sectional arrangement in composite on the predicted 
properties is analyzed. The following conclusions are 
drawn. 
 Increase in Vf results in increase in Young’s modulii. 
 Ellipse aspect ratio influences transverse Young’s 

modulii at higher Vf and Poisson’s ratios at almost all 

values of Vf. 
 The idea of the present analysis gives the scope to 

choose various arrangements of materials in a 
composite in view of material stiffness. 
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