News Updates Friday 22nd Feb 2019 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Jan/Feb 2019 is 23 Feb 2019, Submit online or at
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

The Tensile and Wear Property Enhancement of Al – Zn –Mg Alloys by Precipitation Hardening and Thermomechanical Treatments

Author : S. S. Sharma, P. R. Prabhu, Jayashree P. K, Gowri Shankar M. C, Suvit Porwal and Harshdeep Singh

Pages : 1510-1515
Download PDF

Al – Zn-Mg alloys are precipitation hardenable and suitable to thermomechanical treatment. Well known performance characteristics, known fabrication costs, design flexibilities and established manufacturing methods are few of the reasons for the continued confidence in 7XXX series Aluminium alloys. These alloys are effectively used in aerospace industries due to high specific strength, formability and flexibility in property alteration. The small percentage addition of magnesium improves wettability and tensile properties. Precipitation hardening includes solutionising and aging as two basic steps in heat treatment. Solutionising improves formability by retaining high temperature FCC structure at room temperature as super saturated phase and aging allows the precipitation of solute rich intermetallics from super saturated phase. The property enhancement depends upon the temperature and time relationships. Thermomechanical treatment includes intentional deformation of the specimen as the intermediate step between the basic steps of precipitation hardening. Low temperature thermomechanical treatment is concentrated about cold or warm deformation of solution treated specimen before aging. Cold deformation increases lattice defects due to strain hardening. Increase in lattice defect enhances the Intermetallic precipitation rate and well distributed fine precipitates forms during aging. Tremendous improvement in hardness and toughness are seen compare to conventional precipitation hardening if the process is tailored accordingly. In view of this, six different Al – Zn alloys with out and with magnesium addition (1 & 3 wt. %) are analyzed. The cast alloys are homogenized before precipitation hardening and thermomechanical treatment. The hardness strength and wear resistance values are analyzed and compared with magnesium free Al – Zn alloys. Age hardening phenomena is accelerated due to the increased number of potential sites for precipitation in thermomechanical treatment. Higher peak hardness and lesser aging time are the characteristics of thermomechanically treated samples. For maximum hardness, optimum weight percentage of alloying elements is required. The peak aged specimen shows excellent combination of tensile and wear properties.

Keywords: Al – Zn alloys, Thermomechanical, precipitation hardening, lattice defect, solutionising.

Article published in International Journal of Current  Engineering  and Technology, Vol.3,No.4(Oct- 2013)




Call for Papers
  1. IJCET- Jan/Feb 2019 Issue

    Submission Last Date
    23 Feb
  2. DOI is given to all articles
  3. Current Issue
  4. IJTT-March-2019
  5. IJAIE-March-2019
  6. IJCSB-March-2019
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2018 INPRESSCO® All Rights Reserved