News Updates Thursday 27th Oct 2016 :
  • Welcome to International Press Corporation, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Sept/Oct 2016 issue is 28 Oct 2016, Submit online or at
  • Our journals are indexed in University of Regensburg Germany, Google Scholar, Cross Reference data bases
  • Applications for reviewers are invited and can be sent directly to concerned editor's mail

The Participation Ratios of Cement Matrix and Latex Network in Latex Cement Co-Matrix Strength

Author : Ahmed M. Diab, Hafez E. Elyamany and Ali Hassan Ali

Pages : 1899-1911
Download PDF

This investigation aims to present a new approach to study the effect of using polymer latex on the performance of latex cement co-matrix strength. This study was carried out to investigate the effect of latex addition with styrene butadiene rubber as chemical base on cement matrix participation ratio in strength of modified cement paste. Degree of hydration, and compressive strength were measured to evaluate the effect of latex addition on cement participation ratio in latex modified co-matrix strength. According to the new approach, latex network has a great participation ratio in co-matrix strength. The second stage in this study shows an attempt to evaluate the latex participation ratio in mortar and concrete strength with different latex chemical bases. The new approach considers the latex with chemical base of acrylic ester, and polyvinyl acetate has similar effect of styrene butadiene rubber. Effect of latex particles size on latex network strength was studied using the new approach. The test results indicated that the latex participation ratio in co-matrix strength is influenced by type of cement matrix, type of curing, latex type, latex solid/water ratio, strength type and age. For modified concrete, when the SBR solid/water ratio increases the latex participation ratios in flexural and pull out bond strength increases. Generally, the latex participation ratio in co-matrix strength decreases as latex particle size increases.

Keywords: Polymer latex, co-matrix strength, hydration degree, participation ratio.

Article published in International Journal of Current  Engineering  and Technology, Vol.3,No.5(Dec- 2013)




Call for Papers
  1. IJCET- Sept/Oct-2016 Issue

    Submission Last Date
    28 Oct 2016
  2. IJTT-Sept-2016
  3. IJAIE-Sept-2016
  4. IJCSB-Sept-2016
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2016 INPRESSCO® All Rights Reserved