News Updates Friday 20th Jan 2017 :
  • Welcome to International Press Corporation, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Jan/Feb 2017 issue is 20 Jan 2017, Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in University of Regensburg Germany, Google Scholar, Cross Reference data bases
  • Applications for reviewers are invited and can be sent directly to concerned editor's mail

Structural, Electrical and Magnetic Studies of Gd 3+ doped Cobalt Ferrite Nanoparticles


Author : Erum Pervaiz and I.H.Gul

Pages : 377-387
Download PDF
Abstract

 

Gd3+ doped nanocrystalline Co-ferrites CoGdxFe2-xO4 (x =0.0 to 0.1) has been prepared by sol-gel auto combustion technique. Structural and morphology studies were performed using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Indexed XRD patterns confirm the formation of pure cubic spinel phase. Average crystallite sizes ranges from 16 nm to 25 nm ±2. Lattice constant (a) and crystallite size D (311) increases with increase in Gd3+ concentration due to large ionic radii (0.94nm) of Gd3+ replacing Fe3+ (0.64nm ). FT-IR analysis shows the presence of two expected bands attributed to tetrahedral and octahedral metal oxygen vibrations. SEM images show the spherical morphology and uniform size distribution. Room temperature DC electrical resistivity decreases (~106) for x=0.025 then increases up to x=0.1 ~ (2.67×108) Ω-cm. Dielectric properties have been studied in the frequency range of 1 kHz to 5 MHz. Permittivity and tangent loss (tanδ) decreases with the substitution of Gd3+ in parent crystal structure and have values of 12.4 and 0.0160 at 5 MHz respectively. Complex impedance plots were further studied for complete contribution of grains and grain boundary resistances. Magnetic studies shows that magnetization (Ms) decreases with increase in Gd3+ concentration from 63 emu/gm to 27.26 emu/gm, thus the material is becoming low loss dielectric, highly resistive and soft magnetic due to Gd3+ doping.

Keywords: Rare earth ions, XRD, W-H plots, Dielectric properties, AC conductivity, magneto crystalline anisotropy

 

Article published in International Journal of Current  Engineering  and Technology, Vol.2,No.4 (Dec- 2012)

 

 

 

 

Call for Papers
  1. IJCET- Jan/Feb-2017 Issue

    Submission Last Date
    20 Jan 2017
  2. IJTT-March-2017
  3. IJAIE-March-2017
  4. IJCSB-March-2017
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2017 INPRESSCO® All Rights Reserved