Parameter Optimization of ABS-M30i Parts Produced by Fused Deposition Modeling for Minimum Surface Roughness
Pages : 93-97
Download PDF
Abstract
Rapid Prototyping (RP) is the solid free form manufacturing process which enables the quick fabrication of physical models using three-dimensional computer aided design (CAD) data. Fused Deposition Modeling (FDM) is a solid-based rapid prototyping method that extrudes material, layer-by-layer, to build a model. Knowledge of the quality characteristics of FDM fabricated parts is vital. Quality extensively depends on process variable parameters. Hence, the Optimization of these process parameters of FDM is able to make the system more specific and repeatable and such progression can guide to use of FDM in rapid manufacturing applications rather than only producing prototypes. In order to understand this issue, this paper explains the results obtained in the experimental work on the cause of the main FDM process variable parameters namely, layer thickness (A), air gap (B), raster width (C), contour width (D), and raster orientation (E). The novel ABS- M30i biomedical material was used in this research work to build parts. Experiments were conducted using Taguchi’s design of experiments with two levels for each factor. The results are analyzed statistically to determine the significant factors and their interactions.
Keywords: Biomedical material, Fused Deposition modeling, Rapid Prototyping, Surface Roughness, Taguchi’s Method.