News Updates Thursday 19th Oct 2017 :
  • Welcome to International Press Corporation, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Sept/Oct 2017 extended to 20 Oct 2017, Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in University of Regensburg Germany, Google Scholar, Cross Reference data bases
  • Applications for reviewers are invited and can be sent directly to concerned editor's mail

Experimental Investigations on Board Level Electronic Packages Subjected to Sinusoidal Vibration Loads


Author : M.I. Sakri, P.V.Mohanram

Pages : 427-431, DOI:http://Dx.Doi.Org/10.14741/Ijcet/Spl.2.2014.79
Download PDF
Abstract

The lead wires and solder joints of surface mounted sensitive electronic components are more prone to failures due to vibration environments and leads to malfunctioning of electronic system. In this work a Plastic Small Outline Package (PSOP) and Printed Circuit Board (PCB) assembly is used as a test vehicle and subjected to sinusoidal vibrations by mounting the PCB assembly on conventional Nylon spacers. Then, the assembly is subjected to a constant input acceleration of 0.5G. Small input acceleration levels are amplified at resonant frequencies due to which high stresses are induced in lead wires and solder joints. Efforts are made to reduce the stress levels in critical elements of electronic packages, transmissibility ratio, PCB displacement and output acceleration levels by introducing damping using the resilient Neoprene rubber as a spacer material. By mounting the PCB assembly on Neoprene rubber spacers the displacement and output acceleration levels are minimized. The experimental results reveal that, the PCB mounted on Nylon spacers experienced a deflection of 0.1 mm (at PCB centre), output acceleration of 55G and a transmissibility ratio of 110 (at first resonant frequency and 0.5G input). When the PCB assembly was mounted on Neoprene rubber spacers and subjected to same input acceleration of 0.5G, the deflection and peak acceleration levels were reduced by 40% and 46% respectively. Also, the transmissibility ratio was reduced by 46%. Numerical simulation is also done to validate the experimental results. The experimental and numerical simulation results are in close agreement with each other. The methodology of the research work is explained in the following sections.

Keywords: Printed Circuit Board, Lead wires, Solder joints, Rubber spacers, Vibration control, Fatigue life.

Article published in International Conference on Advances in Mechanical Sciences 2014, Special Issue-2 (Feb 2014)

 

 

 

 

Call for Papers
  1. IJCET- Sept/Oct-2017 Issue

    Submission Last Date extended to
    20 Oct 2017
  2. IJTT-Sept-2017
  3. IJAIE-Sept-2017
  4. IJCSB-Sept-2017
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2017 INPRESSCO® All Rights Reserved