News Updates Tuesday 25th Oct 2016 :
  • Welcome to International Press Corporation, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Sept/Oct 2016 issue is 25 Oct 2016, Submit online or at
  • Our journals are indexed in University of Regensburg Germany, Google Scholar, Cross Reference data bases
  • Applications for reviewers are invited and can be sent directly to concerned editor's mail

Sensitivity of Modal Parameters to Detect Damage through Theoretical and Experimental Correlation

Author : Gomaa, F.R. , Nasser A.A. , and Ahmed, Sh. O.

Pages : 172-181
Download PDF

Early detection and localization damage allow increased expectation of reliability; safety and reduction of the maintenance cost. Modal tests including intact and simulated damage state was proposed to investigate steel beam health monitoring. It consists mainly of piezoelectric accelerometers, impact hammer, pulse analyzer with (modal analysis consultant software) and laptop for three cases. The first case is free-free vibration. The second case is boundary condition. The third case is boundary condition with static load. Artificial crack was cut in lower beam flange at mid span. Sensitivity of modal parameters to change of steel member condition was studied for natural frequency, mode shape and damping factor. Finite Element Analysis (FEA) using (ANSYS11) was conducted to study natural frequencies, mode shape and stresses. The steel beam is modeled by three dimensional structural solid element (solid 45). Finite Element results from (ANSYS11) are used to make comparisons between numerical solutions and experimental results in terms of natural frequencies and mode shapes. Improved FE to compute damping matrices is proposed and discussed. Results show that, modal frequencies, mode shapes and damping factor may be used to identify structural damage with saving time. Sensitivity of damping ratios is more sensitive than that of natural frequency.

Keywords: Damage Detection, Structural Health Monitoring, Dynamic Properties, Finite Element, ANSYS11.

Article published in International Journal of Current  Engineering  and Technology, Vol.4,No.1 (Feb- 2014)





Call for Papers
  1. IJCET- Sept/Oct-2016 Issue

    Submission Last Date
    25 Oct 2016
  2. IJTT-Sept-2016
  3. IJAIE-Sept-2016
  4. IJCSB-Sept-2016
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2016 INPRESSCO® All Rights Reserved