News Updates Thursday 26th Dec 2024 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission is open. Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

Increasing the Speed of Polymer Injection Simulation in Hydrocarbon Reservoirs


Author : Mehdi Foroozanfar and Mohammad Reza Rasaie

Pages : 1283-1292, DOI: https://doi.org/10.14741/ijcet/v.8.5.11
Download PDF
Abstract

Reliable reservoir prediction is essential for optimized production and reservoir management. The prediction is normally done by reservoir simulation. Reservoir simulators solve fluid flow equations of reservoir numerically on homogenized coarse blocks of reservoir model. The original fine grids are generated by primary geological blocks which are output of geological software. The upscaling is necessary since geological software by means of statistical methods create models with millions and even billion of grid blocks and dynamic simulation on these models is practically not possible. We have performed an accurate and highly efficient method for upscaling and simulation of polymer injection in three-dimensional (3D) heterogeneous reservoir. In this study we introduced an upscaling method which inspired by nature, there are enough similar aspect between earth and hydrocarbon reservoir which can be used as a pattern for multi scale grid generation. This procedure done for polymer injection which is complex process with high computing volume. It generates a non-uniform grid in which the resolved structure of the fine grid around the wells, as well as in the high-permeability sectors, are preserved, but the rest of the grid is upscaled. The simulation results on the geological structure well compared with the results of upscaled models. The results confirm that nature-inspired method consumes less run time with nearly accuracy of fine model.

Keywords: Polymer Flooding, Upscaling, Grid Modeling, Geological Model, Run Time

Article published in International Journal of Current Engineering and Technology, Vol.8, No.5 (Sept/Oct 2018)

Call for Papers
  1. IJCET- Current Issue
  2. Issues are published in Feb, April, June, Aug, Oct and Dec
  3. DOI is given to all articles
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2023 INPRESSCO® All Rights Reserved