News Updates Wednesday 24th May 2017 :
  • Welcome to International Press Corporation, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Mary/June 2017 extended to 25 May 2017, Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in University of Regensburg Germany, Google Scholar, Cross Reference data bases
  • Applications for reviewers are invited and can be sent directly to concerned editor's mail

Experimental and Numerical Investigation of Heat Transfer from a Rotating Horizontal Cylinder Rotating in Still Air Round its own Horizontal Axes


Author : Reda I. Elghnam

Pages : 23-31
Download PDF
Abstract

 
The present paper deals with experimental measurements and numerical calculations of heat transfer from unconfined rotating circular cylinder rotating in still air round its own horizontal axes. The experimental system under consideration is a rotating cylinder of 50 mm diameter placed in still air. The numerical calculations are carried out by using a finite volume method based commercial computational fluid dynamics solver FLUENT. Numerical solution was used to obtain a qualitative picture of the flow and temperature fields. The experimental measurements and numerical calculations of the heat transfer are characterized in terms of the non-dimensional parameters describing the system, i.e., the Nusselt number (Nu), rotational Reynolds (Re), and Grashof number (Gr). In this work, the experimental measurements are carried out for Reynolds number range of 1880 to 6220 and Grashof numbers range of 14285 to 714285, while the numerical calculations are carried out for Reynolds number range of 0-100000 and Grashof numbers range of 100-1000000. In the present study, effects of rotation on the heat transfer characteristics are presented in terms of the isotherm patterns, streamlines, local and the average Nusselt numbers. The results correlated as: . This equation compares very well with the experimental and theoretical data available for air in published works.

Key Words: Convection Heat Transfer/Rotating Horizontal Cylinder/ Still Air

Article published in International Journal of Thermal Technologies, Vol.3, No.2 (June- 2013)

 

 

 

Call for Papers
  1. IJCET- May/June-2017 Issue

    Submission Last Date
    25 May 2017
  2. IJTT-March-2017
  3. IJAIE-March-2017
  4. IJCSB-March-2017
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2017 INPRESSCO® All Rights Reserved