Design and Economic Evaluation of the ESP and Gas Lift on the Dead Oil Well
Pages : 1548-1553, DOI: https://doi.org/10.14741/ijcet/v.8.6.5
Download PDF
Abstract
Owing to the increasing water cut and decreasing in reservoir pressure of the well, the oil production of the well has seized and the well has become dead. This research study evaluates the implementation of the artificial lift methods ESP and Gas Lift- economically and technically on the well by using the production performance software (PROSPER) and economical yardsticks (NPV & ROI). The theory, design, production forecast, capital and operating expenditures of the electric submersible pump and gas lift are discussed for the appropriate selection of any of two options. The PROSPER software is used as the simulation tool for the design and production forecasting of the ESP and Gas Lift based. The ESP and Gas Lift methods have been simulated for the design and production forecast by entering the reservoir and completion inputs in the software. Subsequently, the software has been simulated to run on different sensitivities of the variables such as water cut, wellhead pressure setting depth, operating frequency and gas injection rates to check the production rates at different scenarios. Having performed the production performance simulation on the selected artificial lift methods, the methods have been investigated by capital budget-ing. In capital budgeting, the capital and operating expenditures of both lift methods were evaluated by determining their discounted value (NPV) and re-turn on investment (ROI). The prime objective of the research is to accomplish maximum production rates and profitability by selecting the most appropriate artificial lift method for the well; as a consequence it is concluded that the suitable artificial lift method for a well can be selected by applying the simulation and economical schemes.
Keywords: Artificial lift methods, Inflow Performance Relation, Vertical Lift Performance, Net-present value, Return on investment
Article published in International Journal of Current Engineering and Technology, Vol.8, No.6 (Nov/Dec 2018)