News Updates Tuesday 23rd Oct 2018 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission last date of Sept/Oct 2018 extended to 25 Oct 2018, Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

Artificial Neural Network-CFD Model to Predict the Bio Production Rate of High Fructose Date Syrup


Author : Karim Gabsi, Maher Trigui, Khaoula Abrougui and Ahmed Noureddine Helal

Pages : 1191-1198
Download PDF
Abstract

Many parameters involved in the bioproduction of fructose from date. These parameters can have significant effects on the yield and quality of the biopruduction of the high fructose date syrup (HFDS); they can be determined by either empirical or numerical investigations for the selected configurations; however, they are expensive procedures. The problem becomes more difficult if the aim is the inverse determination of the operating production process. This paper presents a predictive hybrid model based on the artificial neural networks (ANNs) and finite element method (FEM) that can be used for both forward and inverse prediction. The former is able to determine the diffusion rate, the bioconversion rate and the Fructose %at varying of process parameters, namely the date variety, the speeds of agitation, the date/water ratio, the initial concentration of glucose, the inoculum volume of biomass and the induction time of bioconversion process.The optimal ANN model was found to be a network with two hidden layers and nine neurones in each hidden layer for forward prediction and eleven neurones in each hidden layers for inverse prediction.Prediction errors range between 4% and 5% for the whole data set, both for forward analysis and inverse process design. The results show very good agreement between the predicted and the desired values.

Keywords: HFDS, hybrid approach, ANN, FEM.

Article published in International Journal of Current Engineering and Technology, Vol.5, No.2 (April-2015)

 

Call for Papers
  1. IJCET- Sept/Oct 2018 Issue

    Submission Last Date
    25 Oct
  2. DOI is given to all articles
  3. Current Issue
  4. IJTT-Dec-2018
  5. IJAIE-Dec-2018
  6. IJCSB-Dec-2018
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2018 INPRESSCO® All Rights Reserved