News Updates Thursday 26th Dec 2024 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission is open. Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

A Machine Learning Approach for Fall Detection and Daily Activity Recognition using KNN and QSVM Algorithm


Author : Nagama B. Deshmukh and Chandu R. Barde

Pages : 1247-1250
Download PDF
Abstract

The quantity of more established individuals in western nations is always expanding. A large portion of them like to live autonomously and are defenseless to fall occurrences. Falls frequently lead to genuine or even deadly wounds which are the main source of death for elderlies. To address this issue, it is basic to create hearty fall discovery frameworks. In this specific situation, we build up an AI structure for fall location and every day living action acknowledgment. We use speeding up and precise speed information from two open databases to perceive seven unique exercises including falls and exercises of everyday living. From the increasing speed and rakish speed information, we separate time and recurrence area include and give them to an order calculation. In this work, we test the exhibition of four calculations for arranging human exercises. These calculations are fake neural system (ANN), K-closest neighbors (KNN), quadratic help vector machine (SVM), and troupe sacked tree (EBT). New highlights that improve the presentation of the classifier are removed from the force otherworldly thickness of the speeding up. In an initial step, just the quickening information is utilized for movement acknowledgment.

Keywords: Fall detection, activity recognition, machine learning, acceleration data, angular velocity data, feature extraction.

Call for Papers
  1. IJCET- Current Issue
  2. Issues are published in Feb, April, June, Aug, Oct and Dec
  3. DOI is given to all articles
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2023 INPRESSCO® All Rights Reserved