News Updates Monday 25th Nov 2024 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission is open. Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

Comparative Analysis of various Adaptive Filtering Algorithms for Adaptive System Identification


Author : Mukesh Kumar, Mukesh Kumar A.K.Jaiswal and Rohini Saxena

Pages : 1540-1542
Download PDF
Abstract

System identification is one of the most interesting applications for adaptive filters, for this dissertation provides a comparison of LMS, VSSLMS,NLMS and TDLMS adaptive algorithms. This process provided the best suitable algorithm for usage in adaptive filters for system identification. This technique Based on the error signal, where filter’s coefficients are updated and corrected, in order to adapt, so the output signal has the same values as the reference signal. Its applications include echo cancellation, channel equalization, interference cancellation, and so forth. Simulation results show that the proposed algorithms outperform the standard NLMS and TDLMS algorithms in both convergence rate and steady-state performance for sparse systems identification.

Keywords: LMS, VSSLMS, NLMS and TDLMS Algorithms, Adaptive system identification.

Article published in International Journal of Current  Engineering  and Technology, Vol.4,No.3 (June- 2014)

 

 

Call for Papers
  1. IJCET- Current Issue
  2. Issues are published in Feb, April, June, Aug, Oct and Dec
  3. DOI is given to all articles
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2023 INPRESSCO® All Rights Reserved