News Updates Thursday 21st Nov 2024 :
  • Welcome to INPRESSCO, world's leading publishers, We have served more than 10000+ authors
  • Articles are invited in engineering, science, technology, management, industrial engg, biotechnology etc.
  • Paper submission is open. Submit online or at editor.ijcet@inpressco.com
  • Our journals are indexed in NAAS, University of Regensburg Germany, Google Scholar, Cross Ref etc.
  • DOI is given to all articles

Fuzzy Inference System Modeling to Predict Performance of H3BO3 (nm) and Tio2 (μm) as Lubricants in Machining


Author : Penta Shreenivasarao and K.MeeraSaheb

Pages : 696-698, DOI:http://Dx.Doi.Org/10.14741/Ijcet/Spl.2.2014.132
Download PDF
Abstract

Now a day’s turning is a widely used metal removal process in manufacturing industry that involves generation of high cutting forces and temperature. Lubrication becomes critical to minimize the effects of these forces and temperature on cutting tool and workpiece. Development of lubricants that are ecofriendly is acquiring importance. For this a specific study on the application of MQL (Minimum Quantity Lubricants) as lubricating oil in turning operation is going on. In the present work a specific study on the application of nanosolid boric acid with titanium dioxide (μm) suspended in lubricating oil in turning of AISI 1040 steel with carbide tool. SAE-40 is taken as base lubricants and boric acid solid lubricant of (50, 60 80, 538nm) particlses size and titanium dioxide (100μm) with different weight percentages taken as suspensions. Variations in cutting forces, tool temperatures and surface roughness are studied For this Boric acid nano particles were prepared by using High Energy Ball Milling. Ball milling which was carried out for the total duration of 15 hours. The sample was taken out after every 5 hours of milling for characterizing. Thenano structured boric acid particle size measurement was done by X-Ray Diffractometer which was supported by the XRD Scherer’s formula. It was found that the particle size got reduced from 538nm to 63nm for the period of 15 hrs. In present work, the obtained results were predicted by using Mamdani Fuzzy Inference System Modeling. For the prediction of output parameters of the lathe machining process is modeled using two input variable parameters such as particle size of boric acid (nm) and weight percentage of titanium dioxide (μm). Then the model predictions are compared with a set of reliable experimental data available, and it is found So that proposed fuzzy model gives the results which are well in agreement with experimental results.

Keywords: modeling, prediction, lubricants, XRD.

Article published in International Conference on Advances in Mechanical Sciences 2014, Special Issue-2 (Feb 2014)

 

 

 

 

Call for Papers
  1. IJCET- Current Issue
  2. Issues are published in Feb, April, June, Aug, Oct and Dec
  3. DOI is given to all articles
  • Inpressco Google Scholar
  • Inpressco Science Central
  • Inpressco Global impact factor
  • Inpressco aap

International Press corporation is licensed under a Creative Commons Attribution-Non Commercial NoDerivs 3.0 Unported License
©2010-2023 INPRESSCO® All Rights Reserved